977 resultados para Electric load flow
Resumo:
In the first part some information and characterisation about an AC distribution network that feeds traction substations and their possible influences on the DC traction load flow are presented. Those influences are investigated and mathematically modelled. To corroborate the mathematical model, an example is presented and their results are confronted with real measurements.
Resumo:
In this paper an artificial neural network (ANN) based methodology is proposed for (a) solving the basic load flow, (b) solving the load flow considering the reactive power limits of generation (PV) buses, (c) determining a good quality load flow starting point for ill-conditioned systems, and (d) computing static external equivalent circuits. An analysis of the input data required as well as the ANN architecture is presented. A multilayer perceptron trained with the Levenberg-Marquardt second order method is used. The proposed methodology was tested with the IEEE 30- and 57-bus, and an ill-conditioned 11-bus system. Normal operating conditions (base case) and several contingency situations including different load and generation scenarios have been considered. Simulation results show the excellent performance of the ANN for solving problems (a)-(d). (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper consists in the characterization of medium voltage (MV) electric power consumers based on a data clustering approach. It is intended to identify typical load profiles by selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The best partition is selected using several cluster validity indices. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ behavior. The data-mining-based methodology presented throughout the paper consists in several steps, namely the pre-processing data phase, clustering algorithms application and the evaluation of the quality of the partitions. To validate our approach, a case study with a real database of 1.022 MV consumers was used.
Resumo:
The use of mean values of thermal and electric demand can be justifiable for synthesising the configuration and for estimating the economic results because it simplifies the analysis in a preliminary feasibility study of a cogeneration plant. For determining the cogeneration scheme that best fits the energetic needs of a process several cycles and combinations must be considered, and those technically feasible will be analysed according to economic models. Although interesting for a first approach, this procedure do not consider that the peaks and valleys present in the load patterns will impose additional constraints relatively to the equipment capacities. In this paper, the effects of thermal and electric load fluctuation to the cogeneration plant design were considered. An approach for modelling these load variability is proposed for comparing two competing thermal and electric parity competing schemes. A gas turbine associated to a heat recovery steam generator was then proposed and analysed for thermal- and electric-following operational strategies. Thermal-following option revealed to be more attractive for the technical and economic limits defined for this analysis. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A method for spatial electric load forecasting using elements from evolutionary algorithms is presented. The method uses concepts from knowledge extraction algorithms and linguistic rules' representation to characterize the preferences for land use into a spatial database. The future land use preferences in undeveloped zones in the electrical utility service area are determined using an evolutionary heuristic, which considers a stochastic behavior by crossing over similar rules. The method considers development of new zones and also redevelopment of existing ones. The results are presented in future preference maps. The tests in a real system from a midsized city show a high rate of success when results are compared with information gathered from the utility planning department. The most important features of this method are the need for few data and the simplicity of the algorithm, allowing for future scalability.
Resumo:
The conventional Newton's method is considered to be inadequate for the computation of the maximum loading point (MLP) of power systems since: (i) it encounters difficulties in the vicinity of the MLP: and (ii) the load flow Jacobian matrix becomes singular at the MLP. It is well known that continuation methods are powerful and useful tools that are able to trace the solution PV curve without experiencing such diffculties. However, continuation methods require a parameterisation so that a modified, well conditioned set of load flow equations is obtained. In particular, the Jacobian matrix associated with this modified set of equations should not be singular at the MLP. The authors propose that the actual power losses in transmission branches (lines and transformers) are used to parameterise the approach. Specific procedures for the automatic determination of the most appropriate parameter (branch) are proposed. Such procedures include the utilisation of fast voltage-stability indices. Simulation results are presented to show that the proposed method is able to trace the whole solution PV curve very efficiently.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work is the development of a methodology for electric load forecasting based on a neural network. Here, it is used Backpropagation algorithm with an adaptive process based on fuzzy logic. This methodology results in fast training, when compared to the conventional formulation of Backpropagation algorithm. Results are presented using data from a Brazilian Electric Company and the performance is very good for the proposal objective.
Resumo:
A new approach to solving the Optimal Power Flow problem is described, making use of some recent findings, especially in the area of primal-dual methods for complex programming. In this approach, equality constraints are handled by Newton's method inequality constraints for voltage and transformer taps by the logarithmic barrier method and the other inequality constraints by the augmented Lagrangian method. Numerical test results are presented, showing the effective performance of this algorithm. © 2001 IEEE.
Resumo:
This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.
Resumo:
An agent based model for spatial electric load forecasting using a local movement approach for the spatiotemporal allocation of the new loads in the service zone is presented. The density of electrical load for each of the major consumer classes in each sub-zone is used as the current state of the agents. The spatial growth is simulated with a walking agent who starts his path in one of the activity centers of the city and goes to the limits of the city following a radial path depending on the different load levels. A series of update rules are established to simulate the S growth behavior and the complementarity between classes. The results are presented in future load density maps. The tests in a real system from a mid-size city show a high rate of success when compared with other techniques. The most important features of this methodology are the need for few data and the simplicity of the algorithm, allowing for future scalability. © 2009 IEEE.
Resumo:
In this work the multiarea optimal power flow (OPF) problem is decoupled into areas creating a set of regional OPF subproblems. The objective is to solve the optimal dispatch of active and reactive power for a determined area, without interfering in the neighboring areas. The regional OPF subproblems are modeled as a large-scale nonlinear constrained optimization problem, with both continuous and discrete variables. Constraints violated are handled as objective functions of the problem. In this way the original problem is converted to a multiobjective optimization problem, and a specifically-designed multiobjective evolutionary algorithm is proposed for solving the regional OPF subproblems. The proposed approach has been examined and tested on the RTS-96 and IEEE 354-bus test systems. Good quality suboptimal solutions were obtained, proving the effectiveness and robustness of the proposed approach. ©2009 IEEE.
Resumo:
This paper presents efficient geometric parameterization techniques using the tangent and the trivial predictors for the continuation power flow, developed from observation of the trajectories of the load flow solution. The parameterization technique eliminates the Jacobian matrix singularity of load flow, and therefore all the consequent problems of ill-conditioning, by the addition of the line equations which pass through the points in the plane determined by the variables loading factor and the real power generated by the slack bus, two parameters with clear physical meaning. This paper also provides an automatic step size control around the maximum loading point. Thus, the resulting method enables not only the calculation of the maximum loading point, but also the complete tracing of P-V curves of electric power systems. The technique combines robustness with ease of understanding. The results to the IEEE 300-bus system and of large real systems show the effectiveness of the proposed method. © 2012 IEEE.