951 resultados para Electric inverters
Resumo:
This paper presents the comparison of three topologies of multilevel inverters applied to drive an induction motor of 500 kVA/4.16 kV. The multilevel inverters analyzed are: a neutral point clamped inverter, a symmetrical cascaded multilevel inverter and a hybrid asymmetrical cascaded multilevel inverter. The performance indexes used in the comparison are total harmonic distortion, first order distortion factor, semiconductors power losses distribution and heat-sink volume. The comparison is developed with the purpose of finding the efficiency and the heat-sink volume where the three systems present the same output filter. ©2008 IEEE.
Resumo:
This paper presents new inverter topologies based on the integration of a DC to DC Zeta or Cuk converter with a voltage source inverter (VSI). The proposed integration procedure aims to reduce the amount of components, meaning lower volume, weight and costs. In this context, new families of single-phase and three-phase integrated inverters are also presented. Therefore, considering the novelty for Zeta and Cuk integrated inverters structures, the proposed single-phase and three-phase inverters versions are analyzed for grid-tied and stand-alone applications. Furthermore, in order to demonstrate the feasibility of the proposal, the main simulation and experimental results are presented. © 2011 IEEE.
Resumo:
This paper presents the analysis of a dc-ac converter using a zero-voltage-switching (ZVS) commutation cell. First, we show the cell applied to the buck converter. The stages of operation are presented along with the main current and voltage equations. Next, we adapt the converter to the regenerative-operation mode. Hence, the full-bridge converter at low-frequency operation is connected in the dc-dc output stage (at high frequency). The main switches commute at zero voltage. The converter operated at constant frequency with pulse-width modulation (PWM), and neither overvoltage nor additional current stress was observed by digital simulation. A design example and experimental results obtained by prototype, rated at 275 V and 1 kW, are also presented. © 1997 IEEE.
Resumo:
The behaviors of an arc-shaped stator induction machine (the sector-motor) and a disc-secondary linear induction motor are analyzed in this work for different values of the frequency. Variable frequency is produced by a voltage source controlled-current inverter which keeps constant the r.m.s. value of the phase current, also assuring a sinusoidal waveform. For the simulations of the machine developed thrust, an equivalent circuit is used. It is obtained through the application of the one-dimensional theory to the modeling. The circuit parameters take into account the end effects, always present is these kind of machines. The phase current waveforms are analyzed for their harmonic contents. Experimental measurements were carried out in laboratory and are presented with the simulations, for comparison.
Resumo:
This paper presents a novel isolated electronic ballast for multiple fluorescent lamps, featuring high power-factor, and high efficiency. Two stages compose this new electronic ballast, namely, a new voltage step-down isolated Sepic rectifier, and a classical resonant Half-Bridge inverter. The new isolated Sepic rectifier is obtained from a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The average-current control technique is used in this preregulator stage in order to provide low phase displacement and low Total-Harmonic-Distortion (THD) at input current, resulting in high power-factor, and attending properly IEC 61000-3-2 standards. The resonant Half-Bridge inverter performs Zero-Voltage-Switching (ZVS), providing conditions for the obtaining of overall high efficiency. It is developed a design example for the new isolated electronic ballast rated at 200W output power, 220Vrms input voltage, 115Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Finally, experimental results are presented in order to verify the developed analysis. The THD at input current is equal to 5.25%, for an input voltage THD equal to 1.63%, and the measured overall efficiency is about 88.25%, at rated load.
Resumo:
This paper presents a high efficiency Sepic rectifier for an electronic ballast application with multiple fluorescent lamps. The proposed Sepic rectifier is based on a Zero-Current-Switching (ZCS) Pulse-Width-Modulated (PWM) soft-commutation cell. The high power-factor of this structure is obtained using the instantaneous average-current control technique, in order to attend properly IEC61000-3-2 standards. The inverting stage of this new electronic ballast is a classical Zero-Voltage-Switching (ZVS) Half-Bridge inverter. A proper design methodology is developed for this new electronic ballast, and a design example is presented for an application with five fluorescent lamps 40W-T12 (200W output power), 220Vrms input voltage, 130Vdc dc link voltage, with rectifier and inverter stages operating at 50kHz. Experimental results are also presented. The THD at input current is equal to 6.41%, for an input voltage THD equal to 2.14%, and the measured overall efficiency is about 92.8%, at rated load.
Resumo:
This work presents the stage integration in power electronics converters as a suitable solution for solar photovoltaic inverters. The rated voltages available in Photovoltaic (PV) modules have usually low values for applications such as regulated output voltages in stand-alone or grid-connected configurations. In these cases, a boost stage or a transformer will be necessary. Transformers have low efficiencies, heavy weights and have been used only when galvanic isolation is mandatory. Furthermore, high-frequency transformers increase the converter complexity. Therefore, the most usual topologies use a boost stage and one inverter stage cascaded. However, the complexity, size, weight, cost and lifetime might be improved considering the integration of both stages. These are the expected features to turn attractive this kind of integrated structures. Therefore, some integrated converters are analyzed and compared in this paper in order to support future evaluations and trends for low power single-phase inverters for PV systems. © 2011 IEEE.
Resumo:
This paper presents a briefly review, some trends and perspectives in the field of Photovoltaic energy conversion, which is considered to be the most important renewable energy source in few years, in the coming decades. The power electronics plays a fundamental role in this process, developing systems each times more competitive, efficient, reliable, and also reducing costs and reducing the payback time. Some trends are visible, which are the use of Silicon Carbide devices in PV inverters, the use of integrated inverter structures, the integration of power converters into the PV module or the use of few PV series connection, the development of thinner and more efficient solar cells. Moreover, the discussion about the necessity of MPPT and anti-island schemes are presented, mainly considering the expected growth of grid-tied applications. © 2011 IEEE.
Resumo:
In this work it is proposed to validate an evolutionary tuning algorithm in plants composed by a grid connected inverter. The optimization aims the tuning of the slopes of P-Ω and Q-V curves so that the system is stable, damped and minimum settling time. Simulation and experimental results are presented to prove the feasibility of the proposed approach. However, experimental results demonstrate a compromising effect of grid frequency oscillations in the active power transferring. In addition, it was proposed an additional loop to compensate this effect ensuring a constant active power flow. © 2011 IEEE.
Resumo:
This paper presents the analysis of some usual MPPT (Maximum Power Point Tracking) strategies intended for small wind energy conversion (up to 1kW) based on permanent magnet synchronous generators (PMSG), considering the stand-alone application for a novel buck-boost integrated inverter. Each MPPT method is analytically introduced and then it is simulated using MatLab/Simulink considering standard conditions of wind and also commercially available turbines and generators. The extracted power in each case is compared with the maximum available power, so the tracking factor is calculated for each method. Thus, the focus is on the application to improve the efficiency of stand-alone wind energy conversion systems (WECS) with battery chargers and AC load supplied by inverter. Therefore, for this purpose a novel single phase buck-boost integrated inverter is introduced. Finally, the main experimental results for the introduced inverter are presented. © 2011 IEEE.
Resumo:
This paper presents a three-phase integrated inverter suitable for stand-alone and grid-connected applications. Furthermore, the utilization of the special features of the tri-state coupled with the new space vector modulation allows the converter to present an attractive degree of freedom for the designing of the controllers. Additionally, the control is derived through dq0 transformation, all the system is described and interesting simulation results are available to confirm the proposal. © 2012 IEEE.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS