892 resultados para Electric instrument transformers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEC 61850 Process Bus technology has the potential to improve cost, performance and reliability of substation design. Substantial costs associated with copper wiring (designing, documentation, construction, commissioning and troubleshooting) can be reduced with the application of digital Process Bus technology, especially those based upon international standards. An IEC 61850-9-2 based sampled value Process Bus is an enabling technology for the application of Non-Conventional Instrument Transformers (NCIT). Retaining the output of the NCIT in its native digital form, rather than conversion to an analogue output, allows for improved transient performance, dynamic range, safety, reliability and reduced cost. In this paper we report on a pilot installation using NCITs communicating across a switched Ethernet network using the UCAIug Implementation Guideline for IEC 61850-9-2 (9-2 Light Edition or 9-2LE). This system was commissioned in a 275 kV Line Reactor bay at Powerlink Queensland’s Braemar substation in 2009, with sampled value protection IEDs 'shadowing' the existing protection system. The results of commissioning tests and twelve months of service experience using a Fibre Optic Current Transformer (FOCT) from Smart Digital Optics (SDO) are presented, including the response of the system to fault conditions. A number of remaining issues to be resolved to enable wide-scale deployment of NCITs and IEC 61850-9-2 Process Bus technology are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel instrument for measurement of X-ray intensity from mammography consists of a sensitive pyro-electric detector, a high-sensitivity, low-noise current-to-voltage converter, a microcontroller and a digital display. The heart of this device, and what makes it unique is the pyro-electric detector, which measures radiation by converting heat from absorbed incident X-rays into an electric current. This current is then converted to a voltage and digitised. The detector consists of a ferro-electric crystal; two types were tested; lithium tantalate and lithium niobate. X-ray measurement in mammography is challenging because of its relatively low photon energy range, from 11 keV to 15 keV equivalent mean energy, corresponding to a peak tube potential from 22 to 36 kV. Consequently, energy fluence rate or intensity is low compared with that of common diagnostic X-ray. The instrument is capable of measuring intensities as low as 0.25 mWm -2 with precision greater than 99%. Not only was the instrument capable of performing in the clinical environment, with high background electromagnetic interference and vibration, but its performance was not degraded after being subjected to 140 roentgen (3.6 × 10 -2 C kg -2 air) as measured by piezo-electric (d 33) or pyro-electric coefficients. © IFMBE 2005.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. © 2009 The Berkeley Electronic Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a general way, in an electric power utility the current transformers (CT) are used to measurement and protection of transmission lines (TL) 1 The Power Line Carriers systems (PLC) are used for communication between electrical substations and transmission line protection. However, with the increasing use of optical fiber to communication (due mainly to its high data transmission rate and low signal-noise relation) this application loses potentiality. Therefore, other functions must be defined to equipments that are still in using, one of them is detecting faults (short-circuits) and transmission lines insulator strings damages 2. The purpose of this paper is to verify the possibility of using the path to the ground offered by the CTs instead of capacitive couplings / capacitive potential transformers to detect damaged insulators, since the current transformers are always present in all transmission lines (TL's) bays. To this a comparison between this new proposal and the PLC previous proposed system 2 is shown, evaluating the economical and technical points of view. ©2010 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Section "A": Dissecting and Post-Mortem Instruments Diagnostic Instruments and Apparatus Microscopes and Microscopic Accessories Laboratory Apparatus and Glass Ware Apparatus for Blood and Urine Analysis Apparatus for Phlebotomy, Cupping and Leeching Apparatus for Infusion and Transfusion Syringes for Aspiration and Injection Osteological Preparations Section "B": Anaesthetic, General Operating, Osteotomy, Trepanning, Bullet, Pocket Case, Cautery, Ligatures, Sutures, Dressings, Etc. Section "B" continued Section "C": Eye, Ear, Nasal, Dermal, Oral, Tonsil, Tracheal, Laryngeal,Esophageal, Stomach, Intestinal, Gall Bladder Section "C": continued Section "D": Rectal, Phimosis, Prostatic, Vesical, Urethral, Ureteral, Instruments Section "E": Gynecic, Hysterectomy, Obstetrical, Instrument Satchels, Medicine Cases Section "F": Electric Cautery Transformers, Electro-Cautery Burners and Accessories, Electric Current Controllers, Electro-Diagnostic Outfits, Electrolysis Instruments Electro-Therapeutic Lamps, Faradic Batteries, Galvanic Batteries Section "G": Office Furniture, Office Sterilizing Apparatus, Hospital Supplies, Surgical Rubber Goods, Sick Room Utensils, Invalid Rolling Chairs, Invalid Supplies Section "H": Artificial Limbs, Deformity Apparatus, Fracture Apparatus, Splints, Splint Material, Elastic Hosiery, Abdominal Supporters, Crutches, Trusses, Suspensories, Etc. Index

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IEC Technical Committee 57 (TC57) published a series of standards and technical reports for “Communication networks and systems for power utility automation” as the IEC 61850 series. Sampled value (SV) process buses allow for the removal of potentially lethal voltages and damaging currents inside substation control rooms and marshalling kiosks, reduce the amount of cabling required in substations, and facilitate the adoption of non-conventional instrument transformers. IEC 61850-9-2 provides an inter-operable solution to support multi-vendor process bus solutions. A time synchronisation system is required for a SV process bus, however the details are not defined in IEC 61850-9-2. IEEE Std 1588-2008, Precision Time Protocol version 2 (PTPv2), provides the greatest accuracy of network based time transfer systems, with timing errors of less than 100 ns achievable. PTPv2 is proposed by the IEC Smart Grid Strategy Group to synchronise IEC 61850 based substation automation systems. IEC 61850-9-2, PTPv2 and Ethernet are three complementary protocols that together define the future of sampled value digital process connections in substations. The suitability of PTPv2 for use with SV is evaluated, with preliminary results indicating that steady state performance is acceptable (jitter < 300 ns), and that extremely stable grandmaster oscillators are required to ensure SV timing requirements are met when recovering from loss of external synchronisation (such as GPS).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proposed transmission smart grids will use a digital platform for the automation of substations operating at voltage levels of 110 kV and above. The IEC 61850 series of standards, released in parts over the last ten years, provide a specification for substation communications networks and systems. These standards, along with IEEE Std 1588-2008 Precision Time Protocol version 2 (PTPv2) for precision timing, are recommended by the both IEC Smart Grid Strategy Group and the NIST Framework and Roadmap for Smart Grid Interoperability Standards for substation automation. IEC 61850-8-1 and IEC 61850-9-2 provide an inter-operable solution to support multi-vendor digital process bus solutions, allowing for the removal of potentially lethal voltages and damaging currents from substation control rooms, a reduction in the amount of cabling required in substations, and facilitates the adoption of non-conventional instrument transformers (NCITs). IEC 61850, PTPv2 and Ethernet are three complementary protocol families that together define the future of sampled value digital process connections for smart substation automation. This paper describes a specific test and evaluation system that uses real time simulation, protection relays, PTPv2 time clocks and artificial network impairment that is being used to investigate technical impediments to the adoption of SV process bus systems by transmission utilities. Knowing the limits of a digital process bus, especially when sampled values and NCITs are included, will enable utilities to make informed decisions regarding the adoption of this technology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Process bus networks are the next stage in the evolution of substation design, bringing digital technology to the high voltage switchyard. Benefits of process buses include facilitating the use of Non-Conventional Instrument Transformers, improved disturbance recording and phasor measurement and the removal of costly, and potentially hazardous, copper cabling from substation switchyards and control rooms. This paper examines the role a process bus plays in an IEC 61850 based Substation Automation System. Measurements taken from a process bus substation are used to develop an understanding of the network characteristics of "whole of substation" process buses. The concept of "coherent transmission" is presented and the impact of this on Ethernet switches is examined. Experiments based on substation observations are used to investigate in detail the behavior of Ethernet switches with sampled value traffic. Test methods that can be used to assess the adequacy of a network are proposed, and examples of the application and interpretation of these tests are provided. Once sampled value frames are queued by an Ethernet switch the additional delay incurred by subsequent switches is minimal, and this allows their use in switchyards to further reduce communications cabling, without significantly impacting operation. The performance and reliability of a process bus network operating with close to the theoretical maximum number of digital sampling units (merging units or electronic instrument transformers) was investigated with networking equipment from several vendors, and has been demonstrated to be acceptable.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New substation technology, such as non-conventional instrument transformers,and a need to reduce design and construction costs, are driving the adoption of Ethernet based digital process bus networks for high voltage substations. Protection and control applications can share a process bus, making more efficient use of the network infrastructure. This paper classifies and defines performance requirements for the protocols used in a process bus on the basis of application. These include GOOSE, SNMP and IEC 61850-9-2 sampled values. A method, based on the Multiple Spanning Tree Protocol (MSTP) and virtual local area networks, is presented that separates management and monitoring traffic from the rest of the process bus. A quantitative investigation of the interaction between various protocols used in a process bus is described. These tests also validate the effectiveness of the MSTP based traffic segregation method. While this paper focusses on a substation automation network, the results are applicable to other real-time industrial networks that implement multiple protocols. High volume sampled value data and time-critical circuit breaker tripping commands do not interact on a full duplex switched Ethernet network, even under very high network load conditions. This enables an efficient digital network to replace a large number of conventional analog connections between control rooms and high voltage switchyards.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Widespread adoption by electricity utilities of Non-Conventional Instrument Transformers, such as optical or capacitive transducers, has been limited due to the lack of a standardised interface and multi-vendor interoperability. Low power analogue interfaces are being replaced by IEC 61850 9 2 and IEC 61869 9 digital interfaces that use Ethernet networks for communication. These ‘process bus’ connections achieve significant cost savings by simplifying connections between switchyard and control rooms; however the in-service performance when these standards are employed is largely unknown. The performance of real-time Ethernet networks and time synchronisation was assessed using a scale model of a substation automation system. The test bed was constructed from commercially available timing and protection equipment supplied by a range of vendors. Test protocols have been developed to thoroughly evaluate the performance of Ethernet networks and network based time synchronisation. The suitability of IEEE Std 1588 Precision Time Protocol (PTP) as a synchronising system for sampled values was tested in the steady state and under transient conditions. Similarly, the performance of hardened Ethernet switches designed for substation use was assessed under a range of network operating conditions. This paper presents test methods that use a precision Ethernet capture card to accurately measure PTP and network performance. These methods can be used for product selection and to assess ongoing system performance as substations age. Key findings on the behaviour of multi-function process bus networks are presented. System level tests were performed using a Real Time Digital Simulator and transformer protection relay with sampled value and Generic Object Oriented Substation Events (GOOSE) capability. These include the interactions between sampled values, PTP and GOOSE messages. Our research has demonstrated that several protocols can be used on a shared process bus, even with very high network loads. This should provide confidence that this technology is suitable for transmission substations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)