926 resultados para Elbow Flexor Muscles
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose. To verify the effects of resistance training at the electromyographic fatigue threshold (EMGFT) based on one-repetition maximum strength (1RM), heart rate (HR), rate of perceived exertion (PE) and endurance time (EndT). Methods. Nineteen subjects (training group [TG]: n = 10; control group [CG]: n = 9), performed 1-min bicep curl exercises sets at 25%, 30%, 35% and 40% 1RM. Electromyography (biceps brachii and brachiorradialis), HR and PE were registered. Biceps brachii EMGFT was used to create a load index for an eight-week resistance training programme (three sets until exhaustion/session, two sessions/week) for the TG. The CG only attended one session in the first week and another session in the last week of the eight-week training period for EndT measurement. EndT was determined from the number of repetitions of each of the three sets performed in the first and last training sessions. After training, 1RM, EMGFT, EndT, HR and PE at the different bicep curl load intensities were again measured for both groups. Results. Increases in 1RM (5.9%, p < 0.05) and EndT (> 60%, p < 0.001) after training were found. In addition, PE was reduced at all load intensities (p < 0.05), while no changes were found for HR and EMGFT after training. Conclusions. Strength-endurance training based on the EMGFT improved muscular endurance and also, to a lesser extent, muscular strength. Moreover, the reduced levels of physical exertion after training at the same intensity suggest that endurance training exercises may improve comfort while performing strength exercises.
Resumo:
Subjects with temporomandibular disorders (TMDs) have been found to have clinical signs and symptoms of cervical dysfunction. Although many studies have investigated the relationship between the cervical spine and TMD, no study has evaluated the endurance capacity of the cervical muscles in patients with TMD. Thus the objective of this study was to determine whether patients with TMD had a reduced endurance of the cervical flexor muscles at any level of muscular contraction when compared with healthy subjects. One hundred and forty-nine participants provided data for this study (49 subjects were healthy, 54 had myogenous TMD, and 46 had mixed TMD). There was a significant difference in holding time at 25% MVC between subjects with mixed TMD when compared to subjects with myogenous TMD and healthy subjects. This implies that subjects with mixed TMD had less endurance capacity at a lower level of contraction (25% MVC) than healthy subjects and subjects with myogenous TMD. No significant associations between neck disability, jaw disability, clinical variables and neck flexor endurance test were found.
Resumo:
Most patients with temporomandibular disorders (TMD) have been shown to have cervical spine dysfunction. However, this cervical dysfunction has been evaluated only qualitatively through a general clinical examination of the cervical spine.
Resumo:
During voluntary arm movements, the medial back muscles are differentially active. It is not known whether differential activity also occurs when the trunk is perturbed unpredictably, when the earliest responses are initiated by short-latency spinal mechanisms rather than voluntary commands. To assess this, in unpredictable and self-initiated conditions, a weight was dropped into a bucket that was held by the standing subject (n = 7). EMG activity was recorded from the deep (Deep MF), superficial (Sup MF) and lateral (Lat MF) lumbar multifidus, the thoracic erector spinae (ES) and the biceps brachii. With unpredictable perturbations, EMG activity was first noted in the biceps brachii, then the thoracic ES, followed synchronously in the components of the multifidus. During self-initiated perturbations, background EMG in the Deep MF increased two- to threefold, and the latency of the loading response decreased in six out of the seven subjects. In Sup MF and Lat MF, this increase in background EMG was not observed, and the latency of the loading response was increased. Short-latency reflex mechanisms do not cause differential action of the medial back muscles when the trunk is loaded. However, during voluntary tasks the central nervous system exerts a 'tuned response', which involves discrete activity in the deep and superficial components of the medial lumbar muscles in a way that varies according to the biomechanical action of the muscle component.
Resumo:
The objective of this study was to compare onset of deep and superficial cervical flexor muscle activity during rapid, unilateral arm movements between ten patients with chronic neck pain and 12 control subjects. Deep cervical flexor (DCF) electromyographic activity (EMG) was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid (SCM) and anterior scalene (AS) muscles. While standing, subjects flexed and extended the right arm in response to a visual stimulus. For the control group, activation of DCF, SCM and AS muscles occurred less than 50 ms after the onset of deltoid activity, which is consistent with feedforward control of the neck during arm flexion and extension. When subjects with a history of neck pain flexed the arm, the onsets of DCF and contralateral SCM and AS muscles were significantly delayed (p<0.05). It is concluded that the delay in neck muscle activity associated with movement of the arm in patients with neck pain indicates a significant deficit in the automatic feedforward control of the cervical spine. As the deep cervical muscles are fundamentally important for support of the cervical lordosis and the cervical joints, change in the feedforward response may leave the cervical spine vulnerable to reactive forces from arm movement.
Resumo:
Study Design. Cross-sectional study. Objective. The present study compared activity of deep and superficial cervical flexor muscles and craniocervical flexion range of motion during a test of craniocervical flexion between 10 patients with chronic neck pain and 10 controls. Summary of Background Data. Individuals with chronic neck pain exhibit reduced performance on a test of craniocervical flexion, and training of this maneuver is effective in management of neck complaints. Although this test is hypothesized to reflect dysfunction of the deep cervical flexor muscles, this has not been tested. Methods. Deep cervical flexor electromyographic activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the superficial neck muscles ( sternocleidomastoid and anterior scalene). Root mean square electromyographic amplitude and craniocervical flexion range of motion was measured during five incremental levels of craniocervical flexion in supine. Results. There was a strong linear relation between the electromyographic amplitude of the deep cervical flexor muscles and the incremental stages of the craniocervical flexion test for control and individuals with neck pain ( P = 0.002). However, the amplitude of deep cervical flexor electromyographic activity was less for the group with neck pain than controls, and this difference was significant for the higher increments of the task ( P < 0.05). Although not significant, there was a strong trend for greater sternocleidomastoid and anterior scalene electromyographic activity for the group with neck pain. Conclusions. These data confirm that reduced performance of the craniocervical flexion test is associated with dysfunction of the deep cervical flexor muscles and support the validity of this test for patients with neck pain.
Resumo:
Background and Purpose. A new method of dynamometry has been developed to measure the performance of the craniocervical (CC) flexor muscles by recording the torque that these muscles exert on the cranium around the CC junction. This report describes the method, the specifications of the instrument, and the preliminary reliability data. Subjects and Methods. For the reliability study, 20 subjects (12 subjects with a history of neck pain, 8 subjects without a history of neck pain) performed, on 2 occasions, maximal voluntary isometric contraction (MVIC) tests of CC flexion in 3 positions within the range of CC flexion and submaximal sustained tests (20% and 50% of MVIC) in the middle range of CC flexion (craniocervical neutral position). Reliability coefficients were calculated to establish the test-retest reliability of the measurements. Results. The method demonstrated good reliability over 2 sessions in the measurement of MVIC (intraclass correlation coefficient [ICC] =.79-.93, SEM=0.6-1.4 N-m) and in the measurement of steadiness (standard deviation of torque amplitude) of a sustained contraction at 20% of NMC (ICC=.74-.80, SEM=0.01 N-m), but not at 50% of MVIC (ICC=.07-.76, SEM=0.04-0.13 N-m). Discussion and Conclusion. The new dynamometry method appears to have potential clinical application in the measurement of craniocervical flexor muscle performance.
Resumo:
A novel surface electromyographic (EMG) technique was recently described for the detection of deep cervical flexor muscle activity. Further investigation of this technique is warranted to ensure EMG activity from neighbouring muscles is not markedly influencing the signals recorded. This study compared deep cervical flexor (DCF) muscle activity with the activity of surrounding neck and jaw muscles during various anatomical movements of the neck and jaw in 10 volunteer subjects. DCF EMG activity was recorded with custom electrodes inserted via the nose and fixed by suction to the posterior mucosa of the oropharynx. Surface electrodes were placed over the sternocleidomastoid, anterior scalene, masseter and suprahyoid muscles. Positioned in supine, subjects performed isometric cranio-cervical flexion, cervical flexion, right and left cervical rotation,jaw clench and resisted jaw opening. Across all movements examined, EMG amplitude of the DCF muscles was greatest during neck movements that would require activity of the DCF muscles, particularly during cranio-cervical flexion, their primary anatomical action. The actions of jaw clench and resisted jaw opening demonstrated significantly less DCF EMG activity than the cranio-cervical flexion action (p < 0.05). Across all other movements, the neighbouring neck and jaw muscles demonstrated greatest EMG amplitude during their respective primary anatomical actions, which occurred in the absence of increased EMG amplitude recorded from the DCF muscles. The finding of substantial EMG activity of the DCF muscles only during neck actions that would require their activity, particularly cranio-cervical flexion, and not during actions involving the jaw, provide further assurance that the majority of myoelectric signals detected from the nasopharyngeal electrode are from the DCF muscles. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this study was to examine the effects of different methods of measuring training volume, controlled in different ways, on selected variables that reflect acute neuromuscular responses. Eighteen resistance-trained males performed three fatiguing protocols of dynamic constant external resistance exercise, involving elbow flexors, that manipulated either time-under-tension (TUT) or volume load (VL), defined as the product of training load and repetitions. Protocol A provided a standard for TUT and VL. Protocol B involved the same VL as Protocol A but only 40% concentric TUT; Protocol C was equated to Protocol A for TUT but only involved 50% VL. Fatigue was assessed by changes in maximum voluntary isometric contraction (MVIC), interpolated doublet (ID), muscle twitch characteristics (peak twitch, time to peak twitch, 0.5 relaxation time, and mean rates of force development and twitch relaxation). All protocols produced significant changes (P
Resumo:
The purpose of this study was to investigate the effects of three different weight training protocols, that varied in the way training volume was measured, on acute muscular fatigue. Ten resistance-trained males performed all three protocols which involved dynamic constant resistance exercise of the elbow flexors. Protocol A provided a standard for the time the muscle group was under tension (TUT) and volume load (VL), expressed as the product of the total number of repetitions and the load that was lifted. Protocol B involved 40% of the TUT but the same VL compared to protocol A; protocol C was equated with protocol A for TUT but only involved 50% of the VL. Fatigue was assessed by changes in maximum voluntary isometric force and integrated electromyography (iEMG) between the pre- and post-training protocols. The results of the study showed that, when equated for VL, greater TUT produced greater overall muscular fatigue ( p
Resumo:
Aim. To verify the muscular force and resistance to the movement of the flexor and extensor muscles of the knee of patients with spasticity after treatment with neuromuscular electrical stimulation (NMES) and isotonic exercises. Patients and methods. The patients this study were divided into group I (NMES) and group 2 (isotonic exercises). Their muscular torque and resistance to the movement of the flexor and extensor knee muscles were measured by the isokinetic dynamometer and the degree of spasticity by the modified Ashworth scale before and after ten sessions. Results. Alterations in the scores of the modified Ashworth scale were not observed. An increase in the flexor torque in group 1 (p = 0.041) and in group 2 (p = 0.001) was verified. In the passive mode, group 1 presented a reduction of resistance to the flexion movement (p = 0.026), while in group 2, a reduction of resistance to both the flexion (p = 0,029) and extension movements (p = 0.019) was verified. Conclusions. The two therapeutical resources had their efficiency proven only for the increase of the force of the flexor muscles. The resistance to movement, the isotonic exercises were more effective because they promoted a reduction in the resistance of the flexor and extensor knee muscles.
Resumo:
This study's aim was to identify the effect of oscillation of torques in isometric tasks under identical mechanical conditions on the muscle synergies used. It was hypothesized that bi-functional muscles would play a lesser role in torque oscillation, because they would also generate an undesired oscillation. Thus, changes in muscle synergies were expected as a consequence of oscillation in torque generation. The effect of the trajectory of torque generation was investigated in dual-degrees-of-freedom submaximal isometric oscillation torque tasks at the elbow. The torques were flexion-extension and supination-pronation. Oscillation torques were compared with static torque generations at four torque positions during oscillation. Muscle activity was determined with surface electromyography. Compared with the static torque tasks, the oscillation tasks showed an overall increased muscle activity. The oscillation tasks, however, showed similar activity patterns and muscle synergies compared to the static composite tasks. It was found that the motor system is well able to control different orthogonal combinations of slow torque oscillations and constant torques by employing a single oscillating muscle synergy.
Resumo:
La masse corporelle et la direction des charges sont des facteurs qui peuvent modifier la morphologie des surfaces articulaires qui sont généralement orientées et de taille suffisante pour résister aux charges chroniques. Chez les hominoïdes, les forces de tension et compression, générées par la locomotion, sont transmises à travers l’articulation du coude. Ces espèces ont une morphologie similaire de l’extrémité distale de l’humérus, mais qui présente certaines différences selon la taille des individus et leurs modes de locomotion. Ce projet tente de caractériser plus exhaustivement cette variation en analysant la largeur des surfaces articulaires ainsi que leur position et orientation par rapport à l’axe long de la diaphyse. La prémisse de ce mémoire est que, chez les espèces plus arboricoles, la morphologie de l’articulation distale de l’humérus répond aux stress transverses générés par les puissants muscles fléchisseurs du poignet et des doigts qui traversent le coude obliquement. En revanche, les espèces plus terrestres présentent une morphologie permettant de résister aux forces axiales provenant du contact avec le sol. Des coordonnées tridimensionnelles et des mesures linéaires ont été recueillies sur un échantillon squelettique d’individus des genres Homo, Pan, Gorilla et Pongo. Les résultats obtenus révèlent que l’orientation et la position des surfaces articulaires de la trochlée correspondent aux types de locomotion, or leur taille et celle et du capitulum semblent être influencées par la taille des individus. L’hypothèse suggérant que les stress reliés aux divers modes de locomotion des hominoïdes influencent la morphologie de l’articulation distale de l’humérus est donc supportée.