966 resultados para Elastic-Plastic Material


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the effects of T -stress on steady, dynamic crack growth in an elastic-plastic material are examined using a modified boundary layer formulation. The analyses are carried out under mode I, plane strain conditions by employing a special finite element procedure based on moving crack tip coordinates. The material is assumed to obey the J (2) flow theory of plasticity with isotropic power law hardening. The results show that the crack opening profile as well as the opening stress at a finite distance from the tip are strongly affected by the magnitude and sign of the T -stress at any given crack speed. Further, it is found that the fracture toughness predicted by the analyses enhances significantly with negative T -stress for both ductile and cleavage mode of crack growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a new definition of SE and CE, which is based on the hexahedron mesh and simpler than Chang's original CE/SE method (the space-time Conservation Element and Solution Element method), is proposed and an improved CE/SE scheme is constructed. Furthermore, the improved CE/SE scheme is extended in order to solve the elastic-plastic flow problems. The hybrid particle level set method is used for tracing the interfaces of materials. Proper boundary conditions are presented in interface tracking. Two high-velocity impact problems are simulated numerically and the computational results are carefully compared with the experimental data, as well as the results from other literature and LS-DYNA software. The comparisons show that the computational scheme developed currently is clear in physical concept, easy to be implemented and high accurate and efficient for the problems considered. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Frictionally constrained condition implies dependence of friction force on tangential displacement amplitude. The condition may occur due to chemical, physical, and/or mechanical interaction between the contacting surfaces. The condition, sometimes also referred to as the presliding condition or partial slip condition, is characterized under fretting. Under such conditions, various experimental studies indicate the existence of two distinguishable regions, that is, stick region and slip region. In the present study, frictionally constrained conditions are identified and the evolutions of stick-slip regions are investigated in detail. Investigations have been performed on self-mated stainless steel and chromium carbide coated surfaces mated against stainless steel, under both vacuum and ambient conditions. Contact conditions prevailing at the contact interface were identified based on the mechanical responses and were correlated with the surface damage observed. Surface degradation has been observed in the form of microcracks and material transfer. Detailed numerical analysis has also been performed in order to understand the energy dissipation and the damage mode involved in the surface or subsurface damage. It has been observed that under frictionally constrained conditions, the occurrence of annular slip features are mainly due to the junction growth, resulting from elastic-plastic deformation at the contact interface. Ratcheting has been observed as the governing damage mode under cyclic tangential loading condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell model, and Che analytical formula for the macro-constitutive relation of PRC is obtained. The strength effects of volume fraction of the particle and the strain hardening exponent of matrix material on the macro-constitutive relation are investigated, the relation curve of strain versus stress of PRC is calculated in detail. The present results are consistent; with the results given in the existing references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element method was used to simulate the conical indentation of elastic-plastic solids with work hardening. The ratio of the initial yield strength to the Young's modulus Y/E ranged from 0 to 0.02. Based on the calculation results, two sets of scaling functions for non-dimensional hardness H/K and indenter penetration h are presented in the paper, which have closed simple mathematical form and can be used easily for engineering application. Using the present scaling functions, indentation hardness and indentation loading curves can be easily obtained for a given set of material properties. Meanwhile one can use these scaling functions to obtain material parameters by an instrumented indentation load-displacement curve for loading and unloading if Young's modulus E and Poisson's ratio nu are known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predictions based on an anisotropic elastic-plastic constitutive model proposed in the first part of this paper are compared with the experimental stress and strain data on OHFC copper under first torsion to about 13% and partial unloading, and then tension-torsion to about 10% along eight different loading paths. This paper also describes the deformation and stress of the thin-walled tubular specimen under finite deformation, the numerical implementation of the model, and the detailed procedure for determining the material parameters in the model. Finally, the model is extended to a general representation of the multiple directors, and the elastic-viscoplastic extension of the constitutive model is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental stress-strain data of OFHC copper first under torsion to 13% and then under torsion-tension to about 10% are used to study the characteristics of three elastic-plastic constitutive models: Chaboche's super-positional nonlinear model, Dafalias and Popov's two surface model and Watanabe and Atluri's version of the endochronic model. The three models, originally oriented for infinitesimal deformation, have been extended for finite deformation. The results show (a) the Mises-type yield surface used in the three models brings about significant departure of the predictions from the experimental data; (b) Chaboche's and Dafalias' models are easier than Watanabe and Atluri's model in determining the material parameters in them, and (c) Chaboche's and Watanabe & Atluri's models produce almost the same prediction to the data, while Dafalias' model cannot accurately predict the plastic deformations when a loading path changes in its direction. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal barrier coatings with a columnar microstructure are prone to erosion damage by a mechanism of surface cracking upon impact by small foreign particles. In order to explore this erosion mechanism, the elastic indentation and the elastic-plastic indentation responses of a columnar thermal barrier coating to a spherical indenter were determined by the finite element method and by analytical models. It was shown that the indentation response is intermediate between that of a homogeneous half-space and that given by an elastic-plastic mattress model (with the columns behaving as independent non-linear springs). The sensitivity of the indentation behaviour to geometry and to the material parameters was explored: the diameter of the columns, the gap width between columns, the coefficient of Coulomb friction between columns and the layer height of the thermal barrier coating. The calculations revealed that the level of induced tensile stress is sufficient to lead to cracking of the columns at a depth of about the column radius. It was also demonstrated that the underlying soft bond coat can undergo plastic indentation when the coating comprises parallel columns, but this is less likely for the more realistic case of a random arrangement of tapered columns. © 2009 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A constitutive equation is developed for geometrically-similar sharp indentation of a material capable of elastic, viscous, and plastic deformation. The equation is based on a series of elements consisting of a quadratic (reversible) spring, a quadratic (time-dependent, reversible) dashpot, and a quadratic (time-independent, irreversible) slider-essentially modifying a model for an elastic-perfectly plastic material by incorporating a creeping component. Load-displacement solutions to the constitutive equation are obtained for load-controlled indentation during constant loading-rate testing. A characteristic of the responses is the appearance of a forward-displacing "nose" during unloading of load-controlled systems (e.g., magnetic-coil-driven "nanoindentation" systems). Even in the absence of this nose, and the associated initial negative unloading tangent, load-displacement traces (and hence inferred modulus and hardness values) are significantly perturbed on the addition of the viscous component. The viscous-elastic-plastic (VEP) model shows promise for obtaining material properties (elastic modulus, hardness, time-dependence) of time-dependent materials during indentation experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los últimos años, y asociado al desarrollo de la tecnología MEMS, la técnica de indentación instrumentada se ha convertido en un método de ensayo no destructivo ampliamente utilizado para hallar las características elástico-plásticas de recubrimientos y capas delgadas, desde la escala macroscópica a la microscópica. Sin embargo, debido al complejo mecanismo de contacto debajo de la indentación, es urgente proponer un método más simple y conveniente para obtener unos resultados comparables con otras mediciones tradicionales. En este estudio, el objetivo es mejorar el procedimiento analítico para extraer las propiedades elástico-plásticas del material mediante la técnica de indentación instrumentada. La primera parte se centra en la metodología llevada a cabo para medir las propiedades elásticas de los materiales elásticos, presentándose una nueva metodología de indentación, basada en la evolución de la rigidez de contacto y en la curva fuerza-desplazamiento del ensayo de indentación. El método propuesto permite discriminar los valores de indentación experimental que pudieran estar afectados por el redondeo de la punta del indentador. Además, esta técnica parece ser robusta y permite obtener valores fiables del modulo elástico. La segunda parte se centra en el proceso analítico para determinar la curva tensión-deformación a partir del ensayo de indentación, empleando un indentador esférico. Para poder asemejar la curva tension-deformación de indentación con la que se obtendría de un ensayo de tracción, Tabor determinó empíricamente un factor de constricción de la tensión () y un factor de constricción de la deformación (). Sin embargo, la elección del valor de y  necesitan una derivación analítica. Se describió analíticamente una nueva visión de la relación entre los factores de constricción de tensión y la deformación basado en la deducción de la ecuación de Tabor. Un modelo de elementos finitos y un diseño experimental se realizan para evaluar estos factores de constricción. A partir de los resultados obtenidos, las curvas tension-deformación extraidas de los ensayos de indentación esférica, afectadas por los correspondientes factores de constricción de tension y deformación, se ajustaron a la curva nominal tensión-deformación obtenida de ensayos de tracción convencionales. En la última parte, se estudian las propiedades del revestimiento de cermet Inconel 625-Cr3C2 que es depositado en el medio de una aleación de acero mediante un láser. Las propiedades mecánicas de la matriz de cermet son estudiadas mediante la técnica de indentación instrumentada, haciendo uso de las metodologías propuestas en el presente trabajo. In recent years, along with the development of MEMS technology, instrumented indentation, as one type of a non-destructive measurement technique, is widely used to characterize the elastic and plastic properties of metallic materials from the macro to the micro scale. However, due to the complex contact mechanisms under the indentation tip, it is necessary to propose a more convenient and simple method of instrumented indention to obtain comparable results from other conventional measurements. In this study, the aim is to improve the analytical procedure for extracting the elastic plastic properties of metallic materials by instrumented indentation. The first part focuses on the methodology for measuring the elastic properties of metallic materials. An alternative instrumented indentation methodology is presented. Based on the evolution of the contact stiffness and indentation load versus the depth of penetration, the possibility of obtaining the actual elastic modulus of an elastic-plastic bulk material through instrumented sharp indentation tests has been explored. The proposed methodology allows correcting the effect of the rounding of the indenter tip on the experimental indentation data. Additionally, this technique does not seem too sensitive to the pile-up phenomenon and allows obtaining convincing values of the elastic modulus. In the second part, an analytical procedure is proposed to determine the representative stress-strain curve from the spherical indentation. Tabor has determined the stress constraint factor (stress CF), and strain constraint factor (strain CF), empirically but the choice of a value for and is debatable and lacks analytical derivation. A new insight into the relationship between stress and strain constraint factors is analytically described based on the formulation of Tabor’s equation. Finite element model and experimental tests have been carried out to evaluate these constraint factors. From the results, representative stress-strain curves using the proposed strain constraint factor fit better with the nominal stress-strain curve than those using Tabor’s constraint factors. In the last part, the mechanical properties of an Inconel 625-Cr3C2 cermet coating which is deposited onto a medium alloy steel by laser cladding has been studied. The elastic and plastic mechanical properties of the cermet matrix are studied using depth-sensing indentation (DSI) on the micro scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Thesis, details of a proposed method for the elastic-plastic failure load analysis of complete building structures are given. In order to handle the problem, a computer programme in Atlas Autocode is produced. The structures consist of a number of parallel shear walls and intermediate frames connected by floor slabs. The results of an experimental investigation are given to verify the theoretical results and to demonstrate various factors that may influence the behaviour of these structures. Large full scale practical structures are also analysed by the proposed method and suggestions are made for achieving design economy as well as for extending research in various aspects of this field. The existing programme for elastic-plastic analysis of large frames is modified to allow for the effect of composite action of structural members, i.e. reinforced concrete floor slabs and the supporting steel beams. This modified programme is used to analyse some framed type structures with composite action as well as those which incorporate plates and shear walls. The results obtained are studied to ascertain the influence of composite action and other factors on the load carrying capacity of both bare frames and complete building structures. The theoretical failure load presented in this thesis does not predict the overall failure load of the structure nor does it predict the partial failure load of the shear walls and slabs but it merely predicts the partial failure load of a single frame and assumes that the loss of stiffess of such a frame renders the overall structure unusable. For most structures the analysis proposed in this thesis is likely to break down prematurely due to the failure of the slab and shear wall system and this factor must be taken into account in any future work on such structures. The experimental work reported in this thesis is acknowledged to be unsatisfactory as a verification of the limited theory proposed. In particular perspex was not found to be a suitable material for testing at high loads, micro-concrete may be more suitable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the behavior of granular crystals subjected to impact loading that creates plastic deformation at the contacts between constituent particles. Granular crystals are highly periodic arrangements of spherical particles, arranged into densely packed structures resembling crystals. This special class of granular materials has been shown to have unique dynamics with suggested applications in impact protection. However, previous work has focused on very low amplitude impacts where every contact point can be described using the Hertzian contact law, valid only for purely elastic deformation. In this thesis, we extend previous investigation of the dynamics of granular crystals to significantly higher impact energies more suitable for the majority of applications. Additionally, we demonstrate new properties specific to elastic-plastic granular crystals and discuss their potential applications as well. We first develop a new contact law to describe the interaction between particles for large amplitude compression of elastic-plastic spherical particles including a formulation for strain-rate dependent plasticity. We numerically and experimentally demonstrate the applicability of this contact law to a variety of materials typically used in granular crystals. We then extend our investigation to one-dimensional chains of elastic-plastic particles, including chains of alternating dissimilar materials. We show that, using the new elastic-plastic contact law, we can predict the speed at which impact waves with plastic dissipation propagate based on the material properties of the constituent particles. Finally, we experimentally and numerically investigate the dynamics of two-dimensional and three-dimensional granular crystals with elastic-plastic contacts. We first show that the predicted wave speeds for 1D granular crystals can be extended to 2D and 3D materials. We then investigate the behavior of waves propagating across oblique interfaces of dissimilar particles. We show that the character of the refracted wave can be predicted using an analog to Snell's law for elastic-plastic granular crystals and ultimately show how it can be used to design impact guiding "lenses" for mitigation applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A perfectly plastic von Mises model is proposed to study the elastic-plastic behavior of a porous hierarchical scaffold used for bone regeneration. The proposed constitutive model is implemented in a finite element (FE) routine to obtain the stress-strain relationship of a uniaxially loaded cube of the scaffold, whose constituent is considered to be composed of cortical bone. The results agree well with experimental data for uniaxial loading case of a cancellous bone. We find that the unhomogenized stress distribution results in different mechanical properties from but still comparable to our previous theory. The scaffold is a promising candidate for bone regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an overview of some recent numerical simulations of stationary crack tip fields in elastic-plastic solids is presented. First, asymptotic analyses carried out within the framework of 2D plane strain or plane stress conditions in both pressure insensitive and pressure sensitive plastic solids are reviewed. This is followed by discussion of salient results obtained from recent computational studies. These pertain to 3D characteristics of elastic-plastic near-front fields under mixed mode loading, mechanics of fracture and simulation of near-tip shear banding process of amorphous alloys and influence of crack tip constraint on the structure of near-tip fields in ductile single crystals. These results serve to illustrate several important features associated with stress and strain distributions near the crack tip and provide the foundation for understanding the operative failure mechanisms. The paper concludes by highlighting some of the future prospects for this field of study.