993 resultados para Elastic behavior


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to analyze the quasi-elastic deformational behavior that has been induced by groundwater withdrawal of the Tertiary detrital aquifer of Madrid (Spain). The spatial and temporal evolution of ground surface displacement was estimated by processing two datasets of radar satellite images (SAR) using Persistent Scatterer Interferometry (PSI). The first SAR dataset was acquired between April 1992 and November 2000 by ERS-1 and ERS-2 satellites, and the second one by the ENVISAT satellite between August 2002 and September 2010. The spatial distribution of PSI measurements reveals that the magnitude of the displacement increases gradually towards the center of the well field area, where approximately 80 mm of maximum cumulated displacement is registered. The correlation analysis made between displacement and piezometric time series provides a correlation coefficient greater than 85% for all the wells. The elastic and inelastic components of measured displacements were separated, observing that the elastic component is, on average, more than 4 times the inelastic component for the studied period. Moreover, the hysteresis loops on the stress–strain plots indicate that the response is in the elastic range. These results demonstrate the quasi-elastic behavior of the aquifer. During the aquifer recovery phase ground surface uplift almost recovers from the subsidence experienced during the preceding extraction phase. Taking into account this unique aquifer system, a one dimensional elastic model was calibrated in the period 1997–2000. Subsequently, the model was used to predict the ground surface movements during the period 1992–2010. Modeled displacements were validated with PSI displacement measurements, exhibiting an error of 13% on average, related with the inelastic component of deformation occurring as a long-term trend in low permeability fine-grained units. This result further demonstrates the quasi-elastic deformational behavior of this unique aquifer system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The elastic behavior of single-walled boron nitride nanotubes is studied under axial and torsional loading. Molecular dynamics simulation is carried out with a tersoff potential for modeling the interatomic interactions. Different chiral configurations with similar diameter are considered to study the effect of chirality on the elastic and shear moduli. Furthermore, the effects of tube length on elastic modulus are also studied by considering different aspects ratios. It is observed that both elastic and shear moduli depend upon the chirality of a nanotube. For aspect ratios less than 15, the elastic modulus reduces monotonically with an increase in the chiral angle. For chiral nanotubes, the torsional response shows a dependence on the direction of loading. The difference between the shear moduli against and along the chiral twist directions is maximum for chiral angle of 15 degrees, and zero for zigzag (0 degrees) and armchair (30 degrees) configurations. (C) 2014 AIP Publishing LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Phase stability, elastic behavior, and pressure-induced structural evolution of synthetic boron-mullite Al5BO9 (a = 5.6780(7), b = 15.035(6), and c =7.698(3) Å, space group Cmc21, Z = 4) were investigated up to 25.6(1) GPa by in situ single-crystal synchrotron X-ray diffraction with a diamond anvil cell (DAC) under hydrostatic conditions. No evidence of phase transition was observed up to 21.7(1) GPa. At 25.6(1) GPa, the refined unit-cell parameters deviated significantly from the compressional trend, and the diffraction peaks appeared broader than at lower pressure. At 26.7(1) GPa, the diffraction pattern was not indexable, suggesting amorphization of the material or a phase transition to a high-pressure polymorph. Fitting the P–V data up to 21.7(1) GPa with a second-order Birch–Murnaghan Equation-of-State, we obtained a bulk modulus KT0 = 164(1) GPa. The axial compressibilities, here described as linearized bulk moduli, are as follows: KT0(a) = 244(9), KT0(b) = 120(4), and KT0(c) = 166(11) GPa (KT0(a):KT0(b):KT0(c) = 2.03:1:1.38). The structure refinements allowed a description of the main deformation mechanisms in response to the applied pressure. The stiffer crystallographic direction appears to be controlled by the infinite chains of edge-sharing octahedra running along [100], making the structure less compressible along the a-axis than along the b- and c-axis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We compare magnetovolume effects in bulk and nanoparticles by performing Monte Carlo simulations of a spin-analogous model with coupled spatial and magnetic degrees of freedom and chemical disorder. We find that correlations between surface and bulk atoms lead with decreasing particle size to a substantial modification of the magnetic and elastic behavior at low temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, dynamic crack growth along a ductile-brittle interface under anti-plane strain conditions is studied. The ductile solid is taken to obey the J(2) flow theory of plasticity with linear isotropic strain hardening, while the substrate is assumed to exhibit linear elastic behavior. Firstly, the asymptotic near-tip stress and velocity fields are derived. These fields are assumed to be variable-separable with a power singularity in the radial coordinate centered at the crack tip. The effects of crack speed, strain hardening of the ductile phase and mismatch in elastic moduli of the two phases on the singularity exponent and the angular functions are studied. Secondly, full-field finite element analyses of the problem under small-scale yielding conditions are performed. The validity of the asymptotic fields and their range of dominance are determined by comparing them with the results of the full-field finite element analyses. Finally, theoretical predictions are made of the variations of the dynamic fracture toughness with crack velocity. The influence of the bi-material parameters on the above variation is investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have been regarded as ideal reinforcements of high-performance composites with enormous applications. However, the waviness of the CNTs and the interfacial bonding condition between them and the matrix are two key factors that influence the reinforcing efficiency. In this paper, the effects of the waviness of the CNTs and the interfacial debonding between them and the matrix on the effective moduli of CNT-reinforced composites are studied. A simple analytical model is presented to investigate the influence of the waviness on the effective moduli. Then, two methods are proposed to examine the influence of the debonding. It is shown that both the waviness and debonding can significantly reduce the stiffening effect of the CNTs. The effective moduli are very sensitive to the waviness when the latter is small, and this sensitivity decreases with the increase of the waviness. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the role of connectivity on the linear and nonlinear elastic behavior of amorphous systems using a two-dimensional random network of harmonic springs as a model system. A natural characterization of these systems arises in terms of the network coordination relative to that of an isostatic network $\delta z$; a floppy network has $\delta z<0$, while a stiff network has $\delta z>0$. Under the influence of an externally applied load we observe that the response of both floppy and rigid network are controlled by the same critical point, corresponding to the onset of rigidity. We use numerical simulations to compute the exponents which characterize the shear modulus, the amplitude of non-affine displacements, and the network stiffening as a function of $\delta z$, derive these theoretically and make predictions for the mechanical response of glasses and fibrous networks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, lead iron tantalate/lead zirconium titanate (PZTFT) was demonstrated to possess large, but unreliable, magnetoelectric coupling at room temperature. Such large coupling would be desirable for device applications but reproducibility would also be critical. To better understand the coupling, the properties of all 3 ferroic order parameters, elastic, electric, and magnetic, believed to be present in the material across a range of temperatures, are investigated. In high temperature elastic data, an anomaly is observed at the orthorhombic mm2 to tetragonal 4mm transition, Tot = 475 K, and a softening trend is observed as the temperature is increased toward 1300 K, where the material is known to become cubic. Thermal degradation makes it impos- sible to measure elastic behavior up to this temperature, however. In the low temperature region, there are elastic anomalies near ≈40 K and in the range 160–245 K. The former is interpreted as being due to a magnetic ordering transition and the latter is interpreted as a hysteretic regime of mixed rhom- bohedral and orthorhombic structures. Electrical and magnetic data collected below room temperature show anomalies at remarkably similar temperature ranges to the elastic data. These observations are used to suggest that the three order parameters in PZTFT are strongly coupled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the mechanism of nanoscale fatigue of functionally graded TiN/TiNi films using nano-impact and multiple-loading-cycle nanoindentation tests. The functionally graded films were deposited on silicon substrate, in which TiNi films maintain shape memory and pseudo elastic behavior, while a modified TiN surface layer provides tribological and anti-corrosion properties. Nanomechanical tests were performed to comprehend the localized film performance and failure modes of the functionally graded film using NanoTestTM equipped with Berkovich and conical indenter between 100 μN to 500 mN loads. The loading mechanism and load history are critical to define film failure modes (i.e. backward depth deviation) including the shape memory effect of the functionally graded layer. The results are sensitive to the applied load, loading type (e.g. semi-static, dynamic) and probe geometry. Based on indentation force-depth profiles, depth-time data and post-test surface observations of films, it is concluded that the shape of the nanoindenter is critical in inducing the localized indentation stress and film failure, including shape recovery at the lower load range. Elastic-plastic finite element (FE) simulation during nanoindentation loading indicated that the location of subsurface maximum stress near the interface influences the backward depth deviation type of film failure. A standalone, molecular dynamics simulation was performed with the help of a long range potential energy function to simulate the tensile test of TiN nanowire with two different aspect ratios to investigate the theory of its failure mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introducción: La evaluación de injertos vasculares de submucosa de intestino delgado para la regeneración de vasos sanguíneos ha producido una permeabilidad variable (0-100%) que ha sido concurrente con la variabilidad en las técnicas de fabricación. Metodología: Investigamos los efectos de fabricación en permeabilidad y regeneración en un diseño experimental de 22factorial que combino: 1) preservación (P) o remoción (R) de la capa estratum compactum del intestino, y 2) deshidratada (D) o hidratada (H), dentro de cuatro grupos de estudio (PD, RD, PH, RH). Los injertos fueron implantados en las Arterias Carótidas de porcinos (ID 4.5mm, N=4, 7d). Permeabilidad, trombogenicidad, reacción inflamatoria, vascularización, infiltración de fibroblastos, perfil de polarización de macrófagos y fuerza tensil biaxial fueron evaluadas. Resultados: Todos los injertos PD permanecieron permeables (4/4), pero tuvieron escasa vascularización e infiltración de fibroblastos. El grupo RD permaneció permeable (4/4), presentó una extensa vascularización e infiltración de fibroblastos, y el mayor número del fenotipo de macrófagos (M2) asociado a regeneración. El grupo RH presentó menor permeabilidad (3/4), una extensa vascularización e infiltración de fibroblastos, y un perfil dominante de M2. El grupo PH presentó el menor grado de permeabilidad, y a pesar de mayor infiltración celular que PD, exhibió un fenotipo de macrófagos dominante adverso. La elasticidad de los injertos R evolucionó de una manera similar a las Carótidas nativas (particularmente RD, mientras que los injertos P mantuvieron su rigidez inicial. Discusión: Concluimos que los parámetros de fabricación afectan drásticamente los resultados, siendo los injertos RD los que arrojaron mejores resultados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to compare some of the properties of native and extruded amaranth flour obtained under mild and severe extrusion conditions. The chemical composition of the flours was similar. Flours obtained by both extrusion processes presented high solubility in water, low values of L* (luminosity) and an absence of endothermic peak on the DSC method. Water absorption, retrogradation tendency, final viscosity and the viscous behavior by rheology analysis were also studied. The results indicate that extruded flours have a good potential as an ingredient for food exposed to heat treatment at a high temperature and mechanical shear, for use in instant meal products. On the other hand, original flour properties are comparable to those of amaranth starch, which exhibits similarly high quality paste stability, low solubility in water, and elastic behavior, and could be used as a substitute for raw flour in a range of food formulas. (C) 2011 Elsevier Ltd. All rights reserved.