994 resultados para El Ni˜no
Resumo:
In recent years, maize has become one of the main alternative crops for the autumn winter growing season in the central-western and southeastern regions of Brazil. However, water deficits, sub-optimal temperatures and low solar radiation levels are common problems that are experienced during this growing season by local farmers. One methodology to assess the impact of variable weather conditions on crop production is the use of crop simulation models. The goal of this study was to evaluate the effect of climate variability on maize yield for a subtropical region of Brazil. Specific objectives for this study were (1) to analyse the effect of El Nino Southern Oscillation (ENSO) on precipitation and air temperature for four locations in the state of Sao Paulo and (2) to analyse the impact of ENSO on maize grown off-season for the same four locations using a crop simulation model. For each site, historical weather data were categorised as belonging to one of three phases of ENSO: El Nino (warm sea surface temperature anomalies in the Pacific), La Nina (cool sea surface temperature anomalies) or neutral, based on an index derived from observed sea surface temperature anomalies. During El Nino, there is a tendency for an increase in the rainfall amount during May for the four selected locations, and also during April, mainly in three of the locations, resulting in an increase in simulated maize yield planted between February 15 and March 15. In general, there was a decrease in the simulated yield for maize grown off-season during neutral years. This study showed how a crop model can be used to assess the impact of climate variability on the yield of maize grown off-season in a subtropical region of Brazil. The outcomes of this study can be very useful for both policy makers and local farmers for agricultural planning and decision making. Copyright (C) 2009 Royal Meteorological Society
Resumo:
Recent El Nino events have stimulated interest in the development of modeling techniques to forecast extremes of climate and related health events. Previous studies have documented associations between specific climate variables (particularly temperature and rainfall) and outbreaks of arboviral disease. In some countries, such diseases are sensitive to Fl Nino. Here we describe a climate-based model for the prediction of Ross River virus epidemics in Australia. From a literature search and data on case notifications, we determined in which years there were epidemics of Ross River virus in southern Australia between 1928 and 1998. Predictor variables were monthly Southern Oscillation index values for the year of an epidemic or lagged by 1 year. We found that in southeastern states, epidemic years were well predicted by monthly Southern Oscillation index values in January and September in the previous year. The model forecasts that there is a high probability of epidemic Ross River virus in the southern states of Australia in 1999. We conclude that epidemics of arboviral disease can, at least in principle, be predicted on the basis of climate relationships.
Resumo:
The El Nino/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial interglacial cycle(1). ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time(2,3), but the proposals disagree on whether increased frequency of El Nino events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Nino events ( summer precipitation declines in El Nino years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard - Oeschger events - millennial-scale warm events in the North Atlantic climate record - although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (, 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.
Resumo:
Foi estimada a área queimada, a biomassa vegetal total acima e abaixo do solo, a formação de carvão, a eficiência de queimada e a concentração de carbono de diferentes paisagens naturais e agroecossistemas que foram atingidos pelos incêndios ocorridos durante a passagem do “El Niño” em 1997/98 no Estado de Roraima, extremo norte da Amazônia Brasileira. O objetivo foi o de calcular a emissão bruta de gases do efeito estufa liberados por combustão das diversas classes de biomassa que compõem cada tipo fitofisionômico atingido. A área total efetivamente queimada foi estimada entre 38.144-40.678 km2, sendo 11.394-13.928 km2 de florestas primárias (intactas, em pé) e, o restante, de savanas (22.583 km2), campinas / campinaranas (1.388 km2) e ambientes florestais já transformados como pastagens, área agrícolas e florestas secundárias (2.780 km2). O total de carbono afetado pelos incêndios foi de 42,558 milhões de toneladas, sendo que 19,73 milhões foram liberados por combustão, 22,33 milhões seguiram para a classe de decomposição e 0,52 milhões foram depositados nos sistemas na forma de carvão (estoque de longo prazo). A emissão bruta de gases do efeito estufa, em milhões de toneladas do gás, considerando apenas o emitido por combustão foi de 17,3 de CO2, 0,21-0,35 de CH4, 1,99-3,68 de CO, 0,001-0,003 de N,O, 0,06-0,09 de NOx e 0,25 de hidrocarbonetos não-metânicos (HCNM). O total de carbono equivalente a CO2 emitido por combustão, quando considerado o potencial de aquecimento global de cada gás em um horizonte de tempo de 100 anos utilizado pelo IPCC, foi de 6,1-7,0 milhões de toneladas.
Resumo:
[Traditions. Europe. Espagne. Andalousie]
Resumo:
The stratospheric role in the European winter surface climate response to El Niño–Southern Oscillation sea surface temperature forcing is investigated using an intermediate general circulation model with a well-resolved stratosphere. Under El Niño conditions, both the modeled tropospheric and stratospheric mean-state circulation changes correspond well to the observed “canonical” responses of a late winter negative North Atlantic Oscillation and a strongly weakened polar vortex, respectively. The variability of the polar vortex is modulated by an increase in frequency of stratospheric sudden warming events throughout all winter months. The potential role of this stratospheric response in the tropical Pacific–European teleconnection is investigated by sensitivity experiments in which the mean state and variability of the stratosphere are degraded. As a result, the observed stratospheric response to El Niño is suppressed and the mean sea level pressure response fails to resemble the temporal and spatial evolution of the observations. The results suggest that the stratosphere plays an active role in the European response to El Niño. A saturation mechanism whereby for the strongest El Niño events tropospheric forcing dominates the European response is suggested. This is examined by means of a sensitivity test and it is shown that under large El Niño forcing the European response is insensitive to stratospheric representation.
Resumo:
The ability of climate models to reproduce and predict land surface anomalies is an important but little-studied topic. In this study, an atmosphere and ocean assimilation scheme is used to determine whether HadCM3 can reproduce and predict snow water equivalent and soil moisture during the 1997–1998 El Nino Southern Oscillation event. Soil moisture is reproduced more successfully, though both snow and soil moisture show some predictability at 1- and 4-month lead times. This result suggests that land surface anomalies may be reasonably well initialized for climate model predictions and hydrological applications using atmospheric assimilation methods over a period of time.
Resumo:
In this study, the mechanisms leading to the El Nino peak and demise are explored through a coupled general circulation model ensemble approach evaluated against observations. The results here suggest that the timing of the peak and demise for intense El Nino events is highly predictable as the evolution of the coupled system is strongly driven by a southward shift of the intense equatorial Pacific westerly anomalies during boreal winter. In fact, this systematic late-year shift drives an intense eastern Pacific thermocline shallowing, constraining a rapid El Nino demise in the following months. This wind shift results from a southward displacement in winter of the central Pacific warmest SSTs in response to the seasonal evolution of solar insolation. In contrast, the intensity of this seasonal feedback mechanism and its impact on the coupled system are significantly weaker in moderate El Nino events, resulting in a less pronounced thermocline shallowing. This shallowing transfers the coupled system into an unstable state in spring but is not sufficient to systematically constrain the equatorial Pacific evolution toward a rapid El Nino termination. However, for some moderate events, the occurrence of intense easterly wind anomalies in the eastern Pacific during that period initiate a rapid surge of cold SSTs leading to La Nina conditions. In other cases, weaker trade winds combined with a slightly deeper thermocline allow the coupled system to maintain a broad warm phase evolving through the entire spring and summer and a delayed El Nino demise, an evolution that is similar to the prolonged 1986/87 El Nino event. La Nina events also show a similar tendency to peak in boreal winter, with characteristics and mechanisms mainly symmetric to those described for moderate El Nino cases.
Resumo:
In 2002 India experienced a severe drought, one among the five worst droughts since records began in 1871, notable for its countrywide influence. The drought was primarily due to an unprecedented break in the monsoon during July, which persisted for almost the whole month and affected most of the sub-continent. The failure of the monsoon in 2002 was not predicted and India was not prepared for the devastating impacts on, for example, agriculture. This paper documents the evolution of the 2002 Indian summer monsoon and considers the possible factors that contributed to the drought and the failure of the forecasts. The development of the 2002/2003 El Nino and the unusually high levels of Madden-Julian Oscillation (MJO) activity during the monsoon season are identified as the central players. The 2002/2003 El Nino was characterised by very high sea-surface temperatures (SSTs) in the central Pacific that developed rapidly during the monsoon season. It is suggested that the unusual character of the developing El Nino was associated with the MJO and was a consequence of the eastward extension of the West Pacific Warm Pool, brought about primarily by a series of westerly wind events (WWEs) as part of the eastward movement of the active phase of the MJO. During the boreal summer, the MJO is usually characterised by northward movement, but in 2002 the northward component of the MJO was weak and the MJO was dominated by a strong eastward component, probably driven by the abnormally high SSTs in the central Pacific. It is suggested that a positive feedback existed between the developing El Nino and the eastward component of the MJO, which weakened the active phases of the monsoon. In particular, the unprecedented monsoon break in July could be associated with the juxtaposition of strong MJO activity with a developing El Nino, both of which interfered constructively with each other to produce major perturbations to the distribution of tropical heating. Subsequently, the main impact of the developing El Nino was a modulation of the Walker circulation that led to the overall suppression of the Indian monsoon during thess latter part of the season. It is argued that the unique combination of a rapidly developing El Nino and strong MJO activity, which was timed within the seasonal cycle to have maximum impact on the Indian summer monsoon, meant that prediction of the prolonged break in July and the seasonally deficient rainfall was a challenge for both the empirical and dynamical forecasting systems. Copyright (C) 2006 Royal Meteorological Society.
Resumo:
The modelled El Nino-mean state-seasonal cycle interactions in 23 coupled ocean-atmosphere GCMs, including the recent IPCC AR4 models, are assessed and compared to observations and theory. The models show a clear improvement over previous generations in simulating the tropical Pacific climatology. Systematic biases still include too strong mean and seasonal cycle of trade winds. El Nino amplitude is shown to be an inverse function of the mean trade winds in agreement with the observed shift of 1976 and with theoretical studies. El Nino amplitude is further shown to be an inverse function of the relative strength of the seasonal cycle. When most of the energy is within the seasonal cycle, little is left for inter-annual signals and vice versa. An interannual coupling strength (ICS) is defined and its relation with the modelled El Nino frequency is compared to that predicted by theoretical models. An assessment of the modelled El Nino in term of SST mode (S-mode) or thermocline mode (T-mode) shows that most models are locked into a S-mode and that only a few models exhibit a hybrid mode, like in observations. It is concluded that several basic El Nino-mean state-seasonal cycle relationships proposed by either theory or analysis of observations seem to be reproduced by CGCMs. This is especially true for the amplitude of El Nino and is less clear for its frequency. Most of these relationships, first established for the pre-industrial control simulations, hold for the double and quadruple CO2 stabilized scenarios. The models that exhibit the largest El Nino amplitude change in these greenhouse gas (GHG) increase scenarios are those that exhibit a mode change towards a T-mode (either from S-mode to hybrid or hybrid to T-mode). This follows the observed 1976 climate shift in the tropical Pacific, and supports the-still debated-finding of studies that associated this shift to increased GHGs. In many respects, these models are also among those that best simulate the tropical Pacific climatology (ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1, MRI-CGM2.3.2, UKMO-HadCM3). Results from this large subset of models suggest the likelihood of increased El Nino amplitude in a warmer climate, though there is considerable spread of El Nino behaviour among the models and the changes in the subsurface thermocline properties that may be important for El Nino change could not be assessed. There are no clear indications of an El Nino frequency change with increased GHG.
Resumo:
Observations suggest a possible link between the Atlantic Multidecadal Oscillation (AMO) and El Nino Southern Oscillation (ENSO) variability, with the warm AMO phase being related to weaker ENSO variability. A coupled ocean-atmosphere model is used to investigate this relationship and to elucidate mechanisms responsible for it. Anomalous sea surface temperatures (SSTs) associated with the positive AMO lead to change in the basic state in the tropical Pacific Ocean. This basic state change is associated with a deepened thermocline and reduced vertical stratification of the equatorial Pacific ocean, which in turn leads to weakened ENSO variability. We suggest a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific. The results suggest a non-local mechanism for changes in ENSO statistics and imply that anomalous Atlantic ocean SSTs can modulate both mean climate and climate variability over the Pacific.