24 resultados para Ejector
Resumo:
The search for efficient and accessible cooling systems has increased worldwide. This study aims to build and evaluate an evaporative cooling system using a water driven ejector, allowing it to be installed in places with plenty of water. The system was investigated varying the flow rate and temperature of the circulating water, temperature of the replacement water, and coefficient of performance. The best vacuum obtained was 8.5 kPa at nominal operating conditions of 4.1 ± 0.1 m³/h and 5 ± 0.5 ºC for the circulating water reaching the temperature of 9.7 ± 0.5 ºC. The pulse-like disturbance generated by replacing the cooling water at different periods of times did not result in significant affect vacuum destabilization and the temperature rise in the cooling tank. The coefficient of performance of the system at the highest thermal power of 92.27 W was 0.077, which was underestimated due to possible problems related to pump efficiency. The system evaluated under the conditions proposed can be very efficient for cooling fluids at higher temperatures, and it can be complementary to main refrigeration systems.
Resumo:
Small gaseous combustion systems are being targeted by strict pollution legislation which will provide challenges to reduce the NOx being emitted. A novel type of gas burner has been successfully designed and developed which incorporates a Coanda ejector to promote recirculation of flue gas from the burner exit. This provides a combustion system which gives very low emissions of NOx and CO, whilst maintaining a high degree of flame stability over a range of air/fuel ratios and fuel flow rates. Recirculation of flue gas was obtained by manipulating the aerodynamics of the system, without the aid of external duct work or moving parts. The design of the burner allowed very low pollutant emissions near stoichiometric conditions, resulting in high temperatures of the exit gas. Potential applications of this type of burner are in small and intermediate furnaces where low NOx emissions are required. Moreover, very high-temperature applications, such as glass furnaces could benefit in both cost and pollutant emissions from such a burner.
Resumo:
Sodium cyanide poison is potentially a more humane method to control wild dogs than sodium fluoroacetate (1080) poison. This study quantified the clinical signs and duration of cyanide toxicosis delivered by the M-44 ejector. The device delivered a nominal 0.88 g of sodium cyanide, which caused the animal to loose the menace reflex in a mean of 43 s, and the animal was assumed to have undergone cerebral hypoxia after the last visible breath. The mean time to cerebral hypoxia was 156 s for a vertical pull and 434 s for a side pull. The difference was possibly because some cyanide may be lost in a side Pull. There were three distinct phases of cyanide toxicosis: the initial phase was characterised by head shaking, panting and salivation; the immobilisation phase by incontinence, ataxia and loss of the righting reflex; and the cerebral hypoxia phase by a tetanic seizure. Clinical signs that were exhibited in more than one phase of cyanide toxicosis included retching, agonal breathing, vocalisation, vomiting, altered levels of ocular reflex, leg paddling, tonic muscular spasms, respiratory distress and muscle fasciculations of the muzzle.
Resumo:
Several possible methods of increasing the efficiency and power of hydro power plants by improving the flow passages are investigated in this stydy. The theoretical background of diffuser design and its application to the optimisation of hydraulic turbine draft tubes is presented in the first part of this study. Several draft tube modernisation projects that have been carried out recently are discussed. Also, a method of increasing the efficiency of the draft tube by injecting a high velocity jet into the boundary layer is presented. Methods of increasing the head of a hydro power plant by using an ejector or a jet pump are discussed in the second part of this work. The theoretical principles of various ejector and jet pump types are presented and four different methods of calculating them are examined in more detail. A self-made computer code is used to calculate the gain in the head for two example power plants. Suitable ejector installations for the example plants are also discussed. The efficiency of the ejector power was found to be in the range 6 - 15 % for conventional head increasers, and 30 % for the jet pump at its optimum operating point. In practice, it is impossible to install an optimised jet pump with a 30 % efficiency into the draft tube as this would considerabely reduce the efficiency of the draft tube at normal operating conditions. This demonstrates, however, the potential for improvement which lies in conventional head increaser technology. This study is based on previous publications and on published test results. No actual laboratory measurements were made for this study. Certain aspects of modelling the flow in the draft tube using computational fluid dynamics are discussed in the final part of this work. The draft tube inlet velocity field is a vital boundary condition for such a calculation. Several previously measured velocity fields that have successfully been utilised in such flow calculations are presented herein.
Resumo:
Valupurseiden ja jäysteiden poistaminen on osa alumiinipainevalujen tuotantoprosessia. Työssä on tutkittu käytössä olevien ja uusien menetelmien mahdollisuuksia taloudellisempaan tuotantoon. Purseiden ja jäysteiden poistamiseen käytettävien menetelmien lisäksi tutkimuskohteita ja ideoita on haettu muista metallien työstömenetelmistä. Valupurseiden ja jäysteiden määritelmiä, muodostumista ja luokittelua on esitelty laajasti. Menetelmien tutkimus on painottunut valupurseiden poistamiseen ja valun jälkeistä leikkaamista on tutkittu erityisesti sisäpuolisten muotojen työstämiseen käytettyjen pistintyökalujen kautta. Muotin ulostyöntötapin purseen poistaminen on ollut tärkeä asia menetelmien tutkimuksissa. Valupurseiden, leikkaus- ja koneistusjäysteiden poistamiseksi lastuavista työstömenetelmistä tutkittuja ovat koneistaminen koneistuskeskuksella, aventaminen, hiertopuhallus, suihkuhiertäminen, vesisuihkuleikkaus, ultraäänityöstö, harjaus, painehiertäminen, hiominen kohdistetuilla ja kohdistamattomilla menetelmillä. Myös terminen jäysteenpoistomenetelmä (TEM), kemiallinen työstö (ECM) ja laserleikkaus on otettu esiin tutkimuksessa. Työn tuloksena on näkemys tutkittujen menetelmien jatkokehitystarpeesta ja mahdollisuudesta soveltaa niitä sarjatuotantoon.
Resumo:
Tässä kandidaatintyössä tutkitaan ejektoripumpun suorituskykyä teoreettisesti tutkimukseen pohjautuen ja kokeellisesti testilaitteistolla. Suorituskyvyn tarkastelun lähtökohtana on selvittää ejektorin käyttömahdollisuuksia mikro-ORC-energiamuuntimessa esi- ja pääsyöttöpumpun kavitoinnin estämiseksi ja koko prosessin huollettavuuden parantamiseksi. Ejektorin suorituskyvyn tarkastelu suoritetaan kuitenkin yleisesti sovelluskohteesta riippumatta tehdyt rajaukset huomioiden. Työn tarkoituksena on esitellä testaukseen rakennettava testilaitteisto ominaisuuksineen sekä määrittää kokeellisesti rakennettavalla laitteistolla ejektorin suorituskyvyn tunnuslukuja teoreettisen ja kokeellisen tarkastelun välisten korrelaatioiden selvittämiseksi sekä tilanteeseen sopivan ejektorin valitsemiseksi.
Resumo:
Distillation is a unit operation of process industry, which is used to separate a liquid mixture into two or more products and to concentrate liquid mixtures. A drawback of the distillation is its high energy consumption. An increase in energy and raw material prices has led to seeking ways to improve the energy efficiency of distillation. In this Master's Thesis, these ways are studied in connection with the concentration of hydrogen peroxide at the Solvay Voikkaa Plant. The aim of this thesis is to improve the energy efficiency of the concentration of the Voikkaa Plant. The work includes a review of hydrogen peroxide and its manufacturing. In addition, the fundamentals of distillation and its energy efficiency are reviewed. An energy analysis of the concentration unit of Solvay Voikkaa Plant is presented in the process development study part. It consists of the current and past information of energy and utility consumptions, balances, and costs. After that, the potential ways to improve the energy efficiency of the distillation unit at the factory are considered and their feasibility is evaluated technically and economically. Finally, proposals to improve the energy efficiency are suggested. Advanced process control, heat integration and energy efficient equipment are the most potential ways to carry out the energy efficient improvements of the concentration at the Solvay Voikkaa factory. Optimization of the reflux flow and the temperatures of the overhead condensers can offer immediate savings in the energy and utility costs without investments. Replacing the steam ejector system with a vacuum pump would result in savings of tens of thousands of euros per year. The heat pump solutions, such as utilizing a mechanical vapor recompression or thermal vapor recompression, are not feasible due to the high investment costs and long pay back times.
Resumo:
Foam properties depend on the physico-chemical characteristics of the continuous phase, the method of production and process conditions employed; however the preparation of barista-style milk foams in coffee shops by injection of steam uses milk as its main ingredient which limits the control of foam properties by changing the biochemical characteristics of the continuous phase. Therefore, the control of process conditions and nozzle design are the only ways available to produce foams with diverse properties. Milk foams were produced employing different steam pressures (100-280 kPa gauge) and nozzle designs (ejector, plunging-jet and confined-jet nozzles). The foamability of milk, and the stability, bubble size and texture of the foams were investigated. Variations in steam pressure and nozzle design changed the hydrodynamic conditions during foam production, resulting in foams having a range of properties. Steam pressure influenced foam characteristics, although the net effect depended on the nozzle design used. These results suggest that, in addition to the physicochemical determinants of milk, the foam properties can also be controlled by changing the steam pressure and nozzle design.
Resumo:
The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with greater control of emissions due to the passage of exhaust gases through a macro-porous ceramic bed. This paper presents an infrared burner commercial, which was adapted an experimental ejector, capable of promoting a mixture of liquefied petroleum gas (LPG) and glycerin. By varying the percentage of dual-fuel, it was evaluated the performance of the infrared burner by performing an energy balance and atmospheric emissions. It was introduced a temperature controller with thermocouple modulating two-stage (low heat / high heat), using solenoid valves for each fuel. The infrared burner has been tested and tests by varying the amount of glycerin inserted by a gravity feed system. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by a data acquisition system which recorded real-time measurements of the thermocouples attached. The burner had a stable combustion at levels of 15, 20 and 25% of adding glycerin in mass ratio of LPG gas, increasing the supply of heat to the plate. According to data obtained showed that there was an improvement in the efficiency of the 1st Law of infrared burner with increasing addition of glycerin. The emission levels of greenhouse gases produced by combustion (CO, NOx, SO2 and HC) met the environmental limits set by resolution No. 382/2006 of CONAMA
Resumo:
Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner
Resumo:
The use of waste heat of energy conversion equipment to produce a cooling effect, consists currently in a very interesting way of efficiency improvement of energy systems. The present research has as intention the theoretical and experimental study of a new intermittent refrigeration system ejector cycle characteristics, with use of waste heat. Initially, was doing a bibliographical survey about the vapor ejector refrigeration system technology. In the following stage was doing a simulation of the corresponding thermodynamic cycle, with preliminarily intention to evaluate the performance of the system for different refrigerants fluids. On the basis of the results of the simulation were selected the refrigerant fluid and developed an experimental group of benches of the refrigeration system considered, where pressure and temperature sensory had been inserted in strategical points of the refrigeration archetype and connected to a computerized data acquisition system for measure the refrigerant fluid properties in the thermodynamic cycle. The test results obtained show good agreement with the literature
Resumo:
O objetivo do estudo foi avaliar a deposição de óxido de alumínio no campo operatório do cirurgião-dentista durante a utilização do sistema de abrasão a ar em consultório odontológico, bem como a efetividade da sucção de alta potência na captação desse pó. Por meio de um dispositivo para a coleta das partículas nos locais correspondentes às posições e distâncias de trabalho do profissional, dentes artificiais foram abrasionados. O sistema de sucção empregado para aspiração das partículas foi o de alta potência com sugador de saliva convencional e sugador com abertura ampliada por funil. A mensuração das partículas foi determinada pela quantidade em massa de óxido de alumínio depositada em placas de Petri. Os resultados obtidos por meio de estatística descritiva gráfica revelaram que a maior quantidade de pó se encontrava a 20 cm do operador e na posição de trabalho 9h, quando foi utilizado o sugador de saliva convencional. Uma vez comprovado que a sucção não é totalmente eficiente na aspiração do pó de óxido de alumínio, reforça-se a importância da proteção individual apropriada para o emprego seguro do sistema de abrasão a ar para pacientes e, principalmente, para os profissionais que trabalham com este tipo de tecnologia.
Resumo:
Aim: The purpose of this study was to compare the effectiveness of a high-volume evacuation and a conventional intraoral suction system and aspirating tips for capturing aluminum oxide particles during use of an air-abrasion device. Methods: A phantom head was fixed at the dental chair head with secured a metallic device with 5 horizontal shafts, corresponding to operator's clockrelated working positions, and one vertical shaft to simulate the operator's nasal cavity. Petri plates were fixed to the shafts at distances of 20, 40 and 60 cm from the center of the oral cavity of the phantom head to collect the aluminum oxide particles spread over during air abrasion. The dust was aspirated with two types of suction tips used with both suction systems: a conventional saliva ejector and a saliva ejector customized by the adaptation of a 55-mm-diameter funnel. Results: The amount of particles showed that the greatest abrasive particle deposition occurred at a distance of 20 cm from the center of the oral cavity of the phantom head at 9 o'clock operatory position with the conventional saliva ejector attached to high-volume evacuation system. Conclusions: The greatest deposition of aluminum oxide particles occurred at the shortest distance between the operator and the center of the oral cavity, while using the high-volume evacuation system associated to the conventional suction tip.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG