58 resultados para Eit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The image reconstruction using the EIT (Electrical Impedance Tomography) technique is a nonlinear and ill-posed inverse problem which demands a powerful direct or iterative method. A typical approach for solving the problem is to minimize an error functional using an iterative method. In this case, an initial solution close enough to the global minimum is mandatory to ensure the convergence to the correct minimum in an appropriate time interval. The aim of this paper is to present a new, simple and low cost technique (quadrant-searching) to reduce the search space and consequently to obtain an initial solution of the inverse problem of EIT. This technique calculates the error functional for four different contrast distributions placing a large prospective inclusion in the four quadrants of the domain. Comparing the four values of the error functional it is possible to get conclusions about the internal electric contrast. For this purpose, initially we performed tests to assess the accuracy of the BEM (Boundary Element Method) when applied to the direct problem of the EIT and to verify the behavior of error functional surface in the search space. Finally, numerical tests have been performed to verify the new technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer modelling has shown that electrical characteristics of individual pixels may be extracted from within multiple-frequency electrical impedance tomography (MFEIT) images formed using a reference data set obtained from a purely resistive, homogeneous medium. In some applications it is desirable to extract the electrical characteristics of individual pixels from images where a purely resistive, homogeneous reference data set is not available. One such application of the technique of MFEIT is to allow the acquisition of in vivo images using reference data sets obtained from a non-homogeneous medium with a reactive component. However, the reactive component of the reference data set introduces difficulties with the extraction of the true electrical characteristics from the image pixels. This study was a preliminary investigation of a technique to extract electrical parameters from multifrequency images when the reference data set has a reactive component. Unlike the situation in which a homogenous, resistive data set is available, it is not possible to obtain the impedance and phase information directly from the image pixel values of the MFEIT images data set, as the phase of the reactive reference is not known. The method reported here to extract the electrical characteristics (the Cole-Cole plot) initially assumes that this phase angle is zero. With this assumption, an impedance spectrum can be directly extracted from the image set. To obtain the true Cole-Cole plot a correction must be applied to account for the inherent rotation of the extracted impedance spectrum about the origin, which is a result of the assumption. This work shows that the angle of rotation associated with the reactive component of the reference data set may be determined using a priori knowledge of the distribution of frequencies of the Cole-Cole plot. Using this angle of rotation, the true Cole-Cole plot can be obtained from the impedance spectrum extracted from the MFEIT image data set. The method was investigated using simulated data, both with and without noise, and also for image data obtained in vitro. The in vitro studies involved 32 logarithmically spaced frequencies from 4 kHz up to 1 MHz and demonstrated that differences between the true characteristics and those of the impedance spectrum were reduced significantly after application of the correction technique. The differences between the extracted parameters and the true values prior to correction were in the range from 16% to 70%. Following application of the correction technique the differences were reduced to less than 5%. The parameters obtained from the Cole-Cole plot may be useful as a characterization of the nature and health of the imaged tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strasbourg, 23 September 1998, Judgement delivered by a Chamber (100/1997/884/1096)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical impedance tomography (EIT) allows the measurement of intra-thoracic impedance changes related to cardiovascular activity. As a safe and low-cost imaging modality, EIT is an appealing candidate for non-invasive and continuous haemodynamic monitoring. EIT has recently been shown to allow the assessment of aortic blood pressure via the estimation of the aortic pulse arrival time (PAT). However, finding the aortic signal within EIT image sequences is a challenging task: the signal has a small amplitude and is difficult to locate due to the small size of the aorta and the inherent low spatial resolution of EIT. In order to most reliably detect the aortic signal, our objective was to understand the effect of EIT measurement settings (electrode belt placement, reconstruction algorithm). This paper investigates the influence of three transversal belt placements and two commonly-used difference reconstruction algorithms (Gauss-Newton and GREIT) on the measurement of aortic signals in view of aortic blood pressure estimation via EIT. A magnetic resonance imaging based three-dimensional finite element model of the haemodynamic bio-impedance properties of the human thorax was created. Two simulation experiments were performed with the aim to (1) evaluate the timing error in aortic PAT estimation and (2) quantify the strength of the aortic signal in each pixel of the EIT image sequences. Both experiments reveal better performance for images reconstructed with Gauss-Newton (with a noise figure of 0.5 or above) and a belt placement at the height of the heart or higher. According to the noise-free scenarios simulated, the uncertainty in the analysis of the aortic EIT signal is expected to induce blood pressure errors of at least ± 1.4 mmHg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to guarantee database consistency, a database system should synchronize operations of concurrent transactions. The database component responsible for such synchronization is the scheduler. A scheduler synchronizes operations belonging to different transactions by means of concurrency control protocols. Concurrency control protocols may present different behaviors: in general, a scheduler behavior can be classified as aggressive or conservative. This paper presents the Intelligent Transaction Scheduler (ITS), which has the ability to synchronize the execution of concurrent transactions in an adaptive manner. This scheduler adapts its behavior (aggressive or conservative), according to the characteristics of the computing environment in which it is inserted, using an expert system based on fuzzy logic. The ITS can implement different correctness criteria, such as conventional (syntactic) serializability and semantic serializability. In order to evaluate the performance of the ITS in relation to others schedulers with exclusively aggressive or conservative behavior, it was applied in a dynamic environment, such as a Mobile Database Community (MDBC). An MDBC simulator was developed and many sets of tests were run. The experimentation results, presented herein, prove the efficiency of the ITS in synchronizing transactions in a dynamic environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breathing moves volumes of electrically insulating air into and out of the lungs, producing conductivity changes which can be seen by electrical impedance tomography (EIT). It has thus been apparent, since the early days of EIT research, that imaging of ventilation could become a key clinical application of EIT. In this paper, we review the current state and future prospects for lung EIT, by a synthesis of the presentations of the authors at the 'special lung sessions' of the annual biomedical EIT conferences in 2009-2011. We argue that lung EIT research has arrived at an important transition. It is now clear that valid and reproducible physiological information is available from EIT lung images. We must now ask the question: How can these data be used to help improve patient outcomes? To answer this question, we develop a classification of possible clinical scenarios in which EIT could play an important role, and we identify clinical and experimental research programmes and engineering developments required to turn EIT into a clinically useful tool for lung monitoring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work of the present thesis is focused on the implementation of microelectronic voltage sensing devices, with the purpose of transmitting and extracting analog information between devices of different nature at short distances or upon contact. Initally, chip-to-chip communication has been studied, and circuitry for 3D capacitive coupling has been implemented. Such circuits allow the communication between dies fabricated in different technologies. Due to their novelty, they are not standardized and currently not supported by standard CAD tools. In order to overcome such burden, a novel approach for the characterization of such communicating links has been proposed. This results in shorter design times and increased accuracy. Communication between an integrated circuit (IC) and a probe card has been extensively studied as well. Today wafer probing is a costly test procedure with many drawbacks, which could be overcome by a different communication approach such as capacitive coupling. For this reason wireless wafer probing has been investigated as an alternative approach to standard on-contact wafer probing. Interfaces between integrated circuits and biological systems have also been investigated. Active electrodes for simultaneous electroencephalography (EEG) and electrical impedance tomography (EIT) have been implemented for the first time in a 0.35 um process. Number of wires has been minimized by sharing the analog outputs and supply on a single wire, thus implementing electrodes that require only 4 wires for their operation. Minimization of wires reduces the cable weight and thus limits the patient's discomfort. The physical channel for communication between an IC and a biological medium is represented by the electrode itself. As this is a very crucial point for biopotential acquisitions, large efforts have been carried in order to investigate the different electrode technologies and geometries and an electromagnetic model is presented in order to characterize the properties of the electrode to skin interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cover-title.