912 resultados para Eigenfunction Expansion
Resumo:
An eigenfunction expansion-variational method based on a unit cell is developed to deal with the steady-state heat conduction problem of doubly-periodic fiber reinforced composites with interfacial thermal contact resistance or coating. The numerical results show a rapid convergence of the present method. The present solution provides a unified first-order approximation formula of the effective thermal conductivity for different interfacial characteristics and fiber distributions. A comparison with the present high-order results, available experimental data and micromechanical estimations demonstrates that the first-order approximation formula is a good engineering closed-form formula. An engineering equivalent parameter reflecting the overall influence of the thermal conductivities of the matrix and fibers and the interfacial characteristic on the effective thermal conductivity, is found. The equivalent parameter can greatly simplify the complicated relation of the effective thermal conductivity to the internal structure of a composite. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Using a mixed-type Fourier transform of a general form in the case of water of infinite depth and the method of eigenfunction expansion in the case of water of finite depth, several boundary-value problems involving the propagation and scattering of time harmonic surface water waves by vertical porous walls have been fully investigated, taking into account the effect of surface tension also. Known results are recovered either directly or as particular cases of the general problems under consideration.
Resumo:
Diffusion in a composite slab consisting of a large number of layers provides an ideal prototype problem for developing and analysing two-scale modelling approaches for heterogeneous media. Numerous analytical techniques have been proposed for solving the transient diffusion equation in a one-dimensional composite slab consisting of an arbitrary number of layers. Most of these approaches, however, require the solution of a complex transcendental equation arising from a matrix determinant for the eigenvalues that is difficult to solve numerically for a large number of layers. To overcome this issue, in this paper, we present a semi-analytical method based on the Laplace transform and an orthogonal eigenfunction expansion. The proposed approach uses eigenvalues local to each layer that can be obtained either explicitly, or by solving simple transcendental equations. The semi-analytical solution is applicable to both perfect and imperfect contact at the interfaces between adjacent layers and either Dirichlet, Neumann or Robin boundary conditions at the ends of the slab. The solution approach is verified for several test cases and is shown to work well for a large number of layers. The work is concluded with an application to macroscopic modelling where the solution of a fine-scale multilayered medium consisting of two hundred layers is compared against an “up-scaled” variant of the same problem involving only ten layers.
Resumo:
A method involving eigenfunction expansion and collocation is employed to solve the axisymmetric problem of a slowly and steadily rotating circular disc in a fluid of finite extent whose surface is covered with a surfactant film. The present method (originally described by Wang (Acta Mech. 94, 97, 1992)) is observed to produce results of practical importance associated with the problem more quickly and more easily than the one used earlier by Shail and Gooden (Int. J. Multiphase Flow 7, 245, 1992). (C) 1994 Academic Press, Inc.
Resumo:
This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.
Resumo:
The radiation and diffraction of linear water waves by an infinitely long rectangular structure submerged in oblique seas of finite depth is investigated. The analytical expressions for the radiated and diffracted potentials are derived as infinite series by use of the method of separation of variables. The unknown coefficients in the series are determined by the eigenfunction expansion matching method. The expressions for wave forces, hydrodynamic coefficients and reflection and transmission coefficients are given and verified by the boundary element method. Using the present analytical solution, the hydrodynamic influences of the angle of incidence, the submergence, the width and the thickness of the structure on the wave forces, hydrodynamic coefficients, and reflection and transmission coefficients are discussed in detail.
Resumo:
An analytic method is used to study the reflection and transmission coefficients of the double submerged rectangular blocks (DSRBs) in oblique waves.. The scattering potentials are obtained by means of the eigenfunction expansion method, and expressions for the reflection and transmission coefficients are determined. The boundary element method is employed to verify the correctness of the present analytical method. The DSRBs have better performance than the single submerged rectangular block (SSRB) in certain cases. The reflection and transmission properties of the DSRBs are investigated for some specific cases, and the influences of the geometric parameters are also presented.
Resumo:
The scattering of linear water waves by an infinitely long rectangular structure parallel to a vertical wall in oblique seas is investigated. Analytical expressions for the diffracted potentials are derived using the method of separation of variables. The unknown coefficients in the expressions are determined through the application of the eigenfunction expansion matching method. The expressions for wave forces on the structure are given. The calculated results are compared with those obtained by the boundary element method. In addition, the influences of the wall, the angle of wave incidence, the width of the structure, and the distance between the structure and the wall on wave forces are discussed. The method presented here can be easily extended to the study of the diffraction of obliquely incident waves by multiple rectangular structures.
Resumo:
For steady-state heat conduction a new variational functional for a unit cell of composites with periodic microstructures is constructed by considering the quasi-periodicity of the temperature field and in the periodicity of the heat flux fields. Then by combining with the eigenfunction expansion of complex potential which satisfies the fiber-matrix interface conditions, an eigenfunction expansion-variational method (EEVM) based on a unit cell is developed. The effective transverse thermal conductivities of doubly-periodic fiber reinforced composites are calculated, and the first-order approximation formula for the square and hexagonal arrays is presented,which is convenient for engineering application. The numerical results show a good convergency of the presented method, even through the fiber volume fraction is relatively high. Comparisons with the existing analytical and experimental results are made to demonstrate the accuracy and validity of the first-order approximation formula for the hexagonal array.
Resumo:
Seismic wave field numerical modeling and seismic migration imaging based on wave equation have become useful and absolutely necessarily tools for imaging of complex geological objects. An important task for numerical modeling is to deal with the matrix exponential approximation in wave field extrapolation. For small value size matrix exponential, we can approximate the square root operator in exponential using different splitting algorithms. Splitting algorithms are usually used on the order or the dimension of one-way wave equation to reduce the complexity of the question. In this paper, we achieve approximate equation of 2-D Helmholtz operator inversion using multi-way splitting operation. Analysis on Gauss integral and coefficient of optimized partial fraction show that dispersion may accumulate by splitting algorithms for steep dipping imaging. High-order symplectic Pade approximation may deal with this problem, However, approximation of square root operator in exponential using splitting algorithm cannot solve dispersion problem during one-way wave field migration imaging. We try to implement exact approximation through eigenfunction expansion in matrix. Fast Fourier Transformation (FFT) method is selected because of its lowest computation. An 8-order Laplace matrix splitting is performed to achieve a assemblage of small matrixes using FFT method. Along with the introduction of Lie group and symplectic method into seismic wave-field extrapolation, accurate approximation of matrix exponential based on Lie group and symplectic method becomes the hot research field. To solve matrix exponential approximation problem, the Second-kind Coordinates (SKC) method and Generalized Polar Decompositions (GPD) method of Lie group are of choice. SKC method utilizes generalized Strang-splitting algorithm. While GPD method utilizes polar-type splitting and symmetric polar-type splitting algorithm. Comparing to Pade approximation, these two methods are less in computation, but they can both assure the Lie group structure. We think SKC and GPD methods are prospective and attractive in research and practice.
Resumo:
Cook, Anthony; Wallis, D.; Burchell, M.J.; Solomon, C.J., (2005) 'Azimuthal Impact Directions from Oblique Impact Crater Morphology', Monthly Notices of the Royal Astronomical Society 359(3) pp.1137-1149 RAE2008
Resumo:
A uniform geometrical theory of diffraction (UTD) solution is developed for the canonical problem of the electromagnetic (EM) scattering by an electrically large circular cylinder with a uniform impedance boundary condition (IBC), when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transform, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the geometrical optics (GO) or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution.
Resumo:
Con esta tesis ”Desarrollo de una Teoría Uniforme de la Difracción para el Análisis de los Campos Electromagnéticos Dispersados y Superficiales sobre un Cilindro” hemos iniciado una nueva línea de investigación que trata de responder a la siguiente pregunta: ¿cuál es la impedancia de superficie que describe una estructura de conductor eléctrico perfecto (PEC) convexa recubierta por un material no conductor? Este tipo de estudios tienen interés hoy en día porque ayudan a predecir el campo electromagnético incidente, radiado o que se propaga sobre estructuras metálicas y localmente convexas que se encuentran recubiertas de algún material dieléctrico, o sobre estructuras metálicas con pérdidas, como por ejemplo se necesita en determinadas aplicaciones aeroespaciales, marítimas o automovilísticas. Además, desde un punto de vista teórico, la caracterización de la impedancia de superficie de una estructura PEC recubierta o no por un dieléctrico es una generalización de varias soluciones que tratan ambos tipos de problemas por separado. En esta tesis se desarrolla una teoría uniforme de la difracción (UTD) para analizar el problema canónico del campo electromagnético dispersado y superficial en un cilindro circular eléctricamente grande con una condición de contorno de impedancia (IBC) para frecuencias altas. Construir una solución basada en UTD para este problema canónico es crucial en el desarrollo de un método UTD para el caso más general de una superficie arbitrariamente convexa, mediante el uso del principio de localización de los campos electromagnéticos a altas frecuencias. Esta tesis doctoral se ha llevado a cabo a través de una serie de hitos que se enumeran a continuación, enfatizando las contribuciones a las que ha dado lugar. Inicialmente se realiza una revisión en profundidad del estado del arte de los métodos asintóticos con numerosas referencias. As í, cualquier lector novel puede llegar a conocer la historia de la óptica geométrica (GO) y la teoría geométrica de la difracción (GTD), que dieron lugar al desarrollo de la UTD. Después, se investiga ampliamente la UTD y los trabajos más importantes que pueden encontrarse en la literatura. As í, este capítulo, nos coloca en la posición de afirmar que, hasta donde nosotros conocemos, nadie ha intentado antes llevar a cabo una investigación rigurosa sobre la caracterización de la impedancia de superficie de una estructura PEC recubierta por un material dieléctrico, utilizando para ello la UTD. Primero, se desarrolla una UTD para el problema canónico de la dispersión electromagnética de un cilindro circular eléctricamente grande con una IBC uniforme, cuando es iluminado por una onda plana con incidencia oblicua a frecuencias altas. La solución a este problema canónico se construye a partir de una solución exacta mediante una expansión de autofunciones de propagación radial. Entonces, ésta se convierte en una nueva expansión de autofunciones de propagación circunferencial muy apropiada para cilindros grandes, a través de la transformación de Watson. De esta forma, la expresión del campo se reduce a una integral que se evalúa asintóticamente, para altas frecuencias, de manera uniforme. El resultado se expresa según el trazado de rayos descrito en la UTD. La solución es uniforme porque tiene la importante propiedad de mantenerse continua a lo largo de la región de transición, a ambos lados de la superficie del contorno de sombra. Fuera de la región de transición la solución se reduce al campo incidente y reflejado puramente ópticos en la región iluminada del cilindro, y al campo superficial difractado en la región de sombra. Debido a la IBC el campo dispersado contiene una componente contrapolar a causa de un acoplamiento entre las ondas TEz y TMz (donde z es el eje del cilindro). Esta componente contrapolar desaparece cuando la incidencia es normal al cilindro, y también en la región iluminada cuando la incidencia es oblicua donde el campo se reduce a la solución de GO. La solución UTD presenta una muy buena exactitud cuando se compara numéricamente con una solución de referencia exacta. A continuación, se desarrolla una IBC efectiva para el cálculo del campo electromagnético dispersado en un cilindro circular PEC recubierto por un dieléctrico e iluminado por una onda plana incidiendo oblicuamente. Para ello se derivan dos impedancias de superficie en relación directa con las ondas creeping y de superficie TM y TE que se excitan en un cilindro recubierto por un material no conductor. Las impedancias de superficie TM y TE están acopladas cuando la incidencia es oblicua, y dependen de la geometría del problema y de los números de onda. Además, se ha derivado una impedancia de superficie constante, aunque con diferente valor cuando el observador se encuentra en la zona iluminada o en la zona de sombra. Después, se presenta una solución UTD para el cálculo de la dispersión de una onda plana con incidencia oblicua sobre un cilindro eléctricamente grande y convexo, mediante la generalización del problema canónico correspondiente al cilindro circular. La solución asintótica es uniforme porque se mantiene continua a lo largo de la región de transición, en las inmediaciones del contorno de sombra, y se reduce a la solución de rayos ópticos en la zona iluminada y a la contribución de las ondas de superficie dentro de la zona de sombra, lejos de la región de transición. Cuando se usa cualquier material no conductor se excita una componente contrapolar que tiende a desaparecer cuando la incidencia es normal al cilindro y en la región iluminada. Se discuten ampliamente las limitaciones de las fórmulas para la impedancia de superficie efectiva, y se compara la solución UTD con otras soluciones de referencia, donde se observa una muy buena concordancia. Y en tercer lugar, se presenta una aproximación para una impedancia de superficie efectiva para el cálculo de los campos superficiales en un cilindro circular conductor recubierto por un dieléctrico. Se discuten las principales diferencias que existen entre un cilindro PEC recubierto por un dieléctrico desde un punto de vista riguroso y un cilindro con una IBC. Mientras para un cilindro de impedancia se considera una impedancia de superficie constante o uniforme, para un cilindro conductor recubierto por un dieléctrico se derivan dos impedancias de superficie. Estas impedancias de superficie están asociadas a los modos de ondas creeping TM y TE excitadas en un cilindro, y dependen de la posición y de la orientación del observador y de la fuente. Con esto en mente, se deriva una solución UTD con IBC para los campos superficiales teniendo en cuenta las dependencias de la impedancia de superficie. La expansión asintótica se realiza, mediante la transformación de Watson, sobre la representación en serie de las funciones de Green correspondientes, evitando as í calcular las derivadas de orden superior de las integrales de tipo Fock, y dando lugar a una solución rápida y precisa. En los ejemplos numéricos realizados se observa una muy buena precisión cuando el cilindro y la separación entre el observador y la fuente son grandes. Esta solución, junto con el método de los momentos (MoM), se puede aplicar para el cálculo eficiente del acoplamiento mutuo de grandes arrays conformados de antenas de parches. Los métodos propuestos basados en UTD para el cálculo del campo electromagnético dispersado y superficial sobre un cilindro PEC recubierto de dieléctrico con una IBC efectiva suponen un primer paso hacia la generalización de una solución UTD para superficies metálicas convexas arbitrarias cubiertas por un material no conductor e iluminadas por una fuente electromagnética arbitraria. ABSTRACT With this thesis ”Development of a Uniform Theory of Diffraction for Scattered and Surface Electromagnetic Field Analysis on a Cylinder” we have initiated a line of investigation whose goal is to answer the following question: what is the surface impedance which describes a perfect electric conductor (PEC) convex structure covered by a material coating? These studies are of current and future interest for predicting the electromagnetic (EM) fields incident, radiating or propagating on locally smooth convex parts of highly metallic structures with a material coating, or by a lossy metallic surfaces, as for example in aerospace, maritime and automotive applications. Moreover, from a theoretical point of view, the surface impedance characterization of PEC surfaces with or without a material coating represents a generalization of independent solutions for both type of problems. A uniform geometrical theory of diffraction (UTD) is developed in this thesis for analyzing the canonical problem of EM scattered and surface field by an electrically large circular cylinder with an impedance boundary condition (IBC) in the high frequency regime, by means of a surface impedance characterization. The construction of a UTD solution for this canonical problem is crucial for the development of the corresponding UTD solution for the more general case of an arbitrary smooth convex surface, via the principle of the localization of high frequency EM fields. The development of the present doctoral thesis has been carried out through a series of landmarks that are enumerated as follows, emphasizing the main contributions that this work has given rise to. Initially, a profound revision is made in the state of art of asymptotic methods where numerous references are given. Thus, any reader may know the history of geometrical optics (GO) and geometrical theory of diffraction (GTD), which led to the development of UTD. Then, the UTD is deeply investigated and the main studies which are found in the literature are shown. This chapter situates us in the position to state that, as far as we know, nobody has attempted before to perform a rigorous research about the surface impedance characterization for material-coated PEC convex structures via UTD. First, a UTD solution is developed for the canonical problem of the EM scattering by an electrically large circular cylinder with a uniform IBC, when it is illuminated by an obliquely incident high frequency plane wave. A solution to this canonical problem is first constructed in terms of an exact formulation involving a radially propagating eigenfunction expansion. The latter is converted into a circumferentially propagating eigenfunction expansion suited for large cylinders, via the Watson transformation, which is expressed as an integral that is subsequently evaluated asymptotically, for high frequencies, in a uniform manner. The resulting solution is then expressed in the desired UTD ray form. This solution is uniform in the sense that it has the important property that it remains continuous across the transition region on either side of the surface shadow boundary. Outside the shadow boundary transition region it recovers the purely ray optical incident and reflected ray fields on the deep lit side of the shadow boundary and to the modal surface diffracted ray fields on the deep shadow side. The scattered field is seen to have a cross-polarized component due to the coupling between the TEz and TMz waves (where z is the cylinder axis) resulting from the IBC. Such cross-polarization vanishes for normal incidence on the cylinder, and also in the deep lit region for oblique incidence where it properly reduces to the GO or ray optical solution. This UTD solution is shown to be very accurate by a numerical comparison with an exact reference solution. Then, an effective IBC is developed for the EM scattered field on a coated PEC circular cylinder illuminated by an obliquely incident plane wave. Two surface impedances are derived in a direct relation with the TM and TE surface and creeping wave modes excited on a coated cylinder. The TM and TE surface impedances are coupled at oblique incidence, and depend on the geometry of the problem and the wave numbers. Nevertheless, a constant surface impedance is found, although with a different value when the observation point lays in the lit or in the shadow region. Then, a UTD solution for the scattering of an obliquely incident plane wave on an electrically large smooth convex coated PEC cylinder is introduced, via a generalization of the canonical circular cylinder problem. The asymptotic solution is uniform because it remains continuous across the transition region, in the vicinity of the shadow boundary, and it recovers the ray optical solution in the deep lit region and the creeping wave formulation within the deep shadow region. When a coating is present a cross-polar field term is excited, which vanishes at normal incidence and in the deep lit region. The limitations of the effective surface impedance formulas are discussed, and the UTD solution is compared with some reference solutions where a very good agreement is met. And in third place, an effective surface impedance approach is introduced for determining surface fields on an electrically large coated metallic circular cylinder. Differences in analysis of rigorouslytreated coated metallic cylinders and cylinders with an IBC are discussed. While for the impedance cylinder case a single constant or uniform surface impedance is considered, for the coated metallic cylinder case two surface impedances are derived. These are associated with the TM and TE creeping wave modes excited on a cylinder and depend on observation and source positions and orientations. With this in mind, a UTD based method with IBC is derived for the surface fields by taking into account the surface impedance variation. The asymptotic expansion is performed, via the Watson transformation, over the appropriate series representation of the Green’s functions, thus avoiding higher-order derivatives of Fock-type integrals, and yielding a fast and an accurate solution. Numerical examples reveal a very good accuracy for large cylinders when the separation between the observation and the source point is large. Thus, this solution could be efficiently applied in mutual coupling analysis, along with the method of moments (MoM), of large conformal microstrip array antennas. The proposed UTD methods for scattered and surface EM field analysis on a coated PEC cylinder with an effective IBC are considered the first steps toward the generalization of a UTD solution for large arbitrarily convex smooth metallic surfaces covered by a material coating and illuminated by an arbitrary EM source.
Resumo:
Multilayered, counterflow, parallel-plate heat exchangers are analyzed numerically and theoretically. The analysis, carried out for constant property fluids, considers a hydrodynamically developed laminar flow and neglects longitudinal conduction both in the fluid and in the plates. The solution for the temperature field involves eigenfunction expansions that can be solved in terms of Whittaker functions using standard symbolic algebra packages, leading to analytical expressions that provide the eigenvalues numerically. It is seen that the approximate solution obtained by retaining the first two modes in the eigenfunction expansion provides an accurate representation for the temperature away from the entrance regions, specially for long heat exchangers, thereby enabling simplified expressions for the wall and bulk temperatures, local heat-transfer rate, overall heat-transfer coefficient, and outlet bulk temperatures. The agreement between the numerical and theoretical results suggests the possibility of using the analytical solutions presented herein as benchmark problems for computational heat-transfer codes.