969 resultados para Effective size
Resumo:
Genetic structure and average long-term connectivity and effective size of mutton snapper (Lutjanus analis) sampled from offshore localities in the U.S. Caribbean and the Florida Keys were assessed by using nuclear-encoded microsatellites and a fragment of mitochondrial DNA. No significant differences in allele, genotype (microsatellites), or haplotype (mtDNA) distributions were detected; tests of selective neutrality (mtDNA) were nonsignificant after Bonferroni correction. Heuristic estimates of average long-term rate of migration (proportion of migrant individuals/generation) between geographically adjacent localities varied from 0.0033 to 0.0054, indicating that local subpopulations could respond independently of environmental perturbations. Estimates of average longterm effective population sizes varied from 341 to 1066 and differed significantly among several of the localities. These results indicate that over time larval drift and interregional adult movement may not be sufficient to maintain population sustainability across the region and that there may be different demographic stocks at some of the localities studied. The estimate of long-term effective population size at the locality offshore of St. Croix was below the minimum threshold size considered necessary to maintain the equilibrium between the loss of adaptive genetic variance from genetic drift and its replacement by mutation. Genetic variability in mutton snapper likely is maintained at the intraregional level by aggregate spawning and random mating of local populations. This feature is perhaps ironic in that aggregate spawning also renders mutton snapper especially vulnerable to overexploitation.
Resumo:
We assayed allelic variation at 19 nuclear-encoded microsatellites among 1622 Gulf red snapper (Lutjanus campechanus) sampled from the 1995 and 1997 cohorts at each of three offshore localities in the northern Gulf of Mexico (Gulf). Localities represented western, central, and eastern subregions within the northern Gulf. Number of alleles per microsatellite per sample ranged from four to 23, and gene diversity ranged from 0.170 to 0.917. Tests of conformity to Hardy-Weinberg equilibrium expectations and of genotypic equilibrium between pairs of micro-satellites were generally nonsignificant following Bonferroni correction. Significant genic or genotypic heterogeneity (or both) among samples was detected at four microsatellites and over all microsatellites. Levels of divergence among samples were low (FST ≤0.001). Pairwise exact tests revealed that six of seven “significant” comparisons involved temporal rather than spatial heterogeneity. Contemporaneous or variance effective size (NeV) was estimated from the temporal variance in allele frequencies by using a maximum-likelihood method. Estimates of NeV ranged between 1098 and >75,000 and differed significantly among localities; the NeV estimate for the sample from the northcentral Gulf was >60 times as large as the estimates for the other two localities. The differences in variance effective size could ref lect differences in number of individuals successfully reproducing, differences in patterns and intensity of immigration, or both, and are consistent with the hypothesis, supported by life-history data, that different “demographic stocks” of red snapper are found in the northern Gulf. Estimates of NeV for red snapper in the northern Gulf were at least three orders of magnitude lower than current estimates of census size (N). The ratio of effective to census size (Ne/N) is far below that expected in an ideal population and may reflect high variance in individual reproductive success, high temporal and spatial variance in productivity among subregions or a combination of the two.
Resumo:
Abstract of Macbeth, G. M., Broderick, D., Buckworth, R. & Ovenden, J. R. (In press, Feb 2013). Linkage disequilibrium estimation of effective population size with immigrants from divergent populations: a case study on Spanish mackerel (Scomberomorus commerson). G3: Genes, Genomes and Genetics. Estimates of genetic effective population size (Ne) using molecular markers are a potentially useful tool for the management of endangered through to commercial species. But, pitfalls are predicted when the effective size is large, as estimates require large numbers of samples from wild populations for statistical validity. Our simulations showed that linkage disequilibrium estimates of Ne up to 10,000 with finite confidence limits can be achieved with sample sizes around 5000. This was deduced from empirical allele frequencies of seven polymorphic microsatellite loci in a commercially harvested fisheries species, the narrow barred Spanish mackerel (Scomberomorus commerson). As expected, the smallest standard deviation of Ne estimates occurred when low frequency alleles were excluded. Additional simulations indicated that the linkage disequilibrium method was sensitive to small numbers of genotypes from cryptic species or conspecific immigrants. A correspondence analysis algorithm was developed to detect and remove outlier genotypes that could possibly be inadvertently sampled from cryptic species or non-breeding immigrants from genetically separate populations. Simulations demonstrated the value of this approach in Spanish mackerel data. When putative immigrants were removed from the empirical data, 95% of the Ne estimates from jacknife resampling were above 24,000.
Resumo:
The major aim of this study was to evaluate the inbreeding (F), average relatedness coefficient (AR) and effective population size (Ne) in the Jaffarabadi buffalo breed from Brazil. Pedigree information of 1,272 animals born from 1966 was used. The effective population size was calculated in two ways: first, computed via individual increase in inbreeding and second estimated by individual increase in coancestry. The known generation numbers were 1.24, 1.76 and 2.64 for complete, equivalent and maximum generation, respectively. The effective size computed via individual increase in coancestry was small with a value of 10.82 +/- 1.29. The effective size computed by individual increase in inbreeding (10.40 +/- 3.69) was very similar but a little smaller than the previous reported value. The average values of F and AR for the population reference (1,059) were 4.22 and 12.5 percent. The mean of F for inbred animals (319) was 14.0%. The F and AR means were 5.7 and 13.3% for animals with at least 1.5 known equivalent generation and 9.3 and 15.97% for individuals having at least 2.5 equivalent generations known. It was found 78 matings between half sibs (6.14%) and 67 matings (5.27%) between parent-offspring. The estimated inbreeding increase per generation by considering maximum generation, complete generation and equivalent generation were 1.21%, 5.18% and 3.57%, respectively. Considering the uncompleted pedigree, the estimated inbreeding for the reference population could be underestimated.
Resumo:
Despite international protection of white sharks Carcharodon carcharias, important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with 6 nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (F-ST = 0.142, p < 0.0001), implying female reproductive philopatry. This concurs with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited micro satellite markers (F-ST = 0.009, p < 0.05), suggesting that males may also exhibit some degree of reproductive philopatry; 5 sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal, or migration resulting in breeding, may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and close to thresholds at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least 1, possibly 2, orders of magnitude below our historical effective size estimates. Population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail.
Resumo:
The duration of movements made to intercept moving targets decreases and movement speed increases when interception requires greater temporal precision. Changes in target size and target speed can have the same effect on required temporal precision, but the response to these changes differs: changes in target speed elicit larger changes in response speed. A possible explanation is that people attempt to strike the target in a central zone that does not vary much with variation in physical target size: the effective size of the target is relatively constant over changes in physical size. Three experiments are reported that test this idea. Participants performed two tasks: (1) strike a moving target with a bat moved perpendicular to the path of the target; (2) press on a force transducer when the target was in a location where it could be struck by the bat. Target speed was varied and target size held constant in experiment 1. Target speed and size were co-varied in experiment 2, keeping the required temporal precision constant. Target size was varied and target speed held constant in experiment 3 to give the same temporal precision as experiment 1. Duration of hitting movements decreased and maximum movement speed increased with increases in target speed and/or temporal precision requirements in all experiments. The effects were largest in experiment 1 and smallest in experiment 3. Analysis of a measure of effective target size (standard deviation of strike locations on the target) failed to support the hypothesis that performance differences could be explained in terms of effective size rather than actual physical size. In the pressing task, participants produced greater peak forces and shorter force pulses when the temporal precision required was greater, showing that the response to increasing temporal precision generalizes to different responses. It is concluded that target size and target speed have independent effects on performance.
Resumo:
Despite international protection of white sharks (Carcharodon carcharias), important conservation parameters such as abundance, population structure and genetic diversity are largely unknown. The tissue of 97 predominately juvenile white sharks sampled from spatially distant eastern and southwestern Australian coastlines was sequenced for the mitochondrial DNA (mtDNA) control region and genotyped with six nuclear-encoded microsatellite loci. MtDNA population structure was found between the eastern and southwestern coasts (FST = 0.142, p < 0.001), implying female natal philopatry. This concords with recent satellite and acoustic tracking findings which suggest the sustained presence of discrete east coast nursery areas. Furthermore, population subdivision was found between the same regions with biparentally inherited microsatellite markers (FST = 0.009, p <0.05), suggesting that males may also exhibit some degree of reproductive philopatry. Five sharks captured along the east coast had mtDNA haplotypes that resembled western Indian Ocean sharks more closely than Australian/New Zealand sharks, suggesting that transoceanic dispersal or migration resulting in breeding may occur sporadically. Our most robust estimate of contemporary genetic effective population size was low and below the threshold at which adaptive potential may be lost. For a variety of reasons, these contemporary estimates were at least one, possibly two orders of magnitude below our historical effective size estimates. Further population decline could expose these genetically isolated populations to detrimental genetic effects. Regional Australian white shark conservation management units should be implemented until genetic population structure, size and diversity can be investigated in more detail. Reference: Blower, D. C., Pandolfi, J. M., Gomez-Cabrera, M. del C., Bruce, B. D. & Ovenden, J. R. (In press - April 2012). Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. Marine Ecology Progress Series.
Resumo:
We used allozyme, microsatellite, and mitochondrial DNA (mtDNA) data to test for spatial and interannual genetic diversity in wall-eye pollock (Theragra chalcogramma) from six spawning aggregations representing three geographic regions: Gulf of Alaska, eastern Bering Sea, and eastern Kamchatka. Interpopulation genetic diversity was evident primarily from the mtDNA and two allozyme loci (SOD-2*, MPI*). Permutation tests ˆindicated that FST values for most allozyme and microsatellite loci were not significantly greater than zero. The microsatellite results suggested that high locus polymorphism may not be a reliable indicator of power for detecting population differentiation in walleye pollock. The fact that mtDNA revealed population structure and most nuclear loci did not suggests that the effective size of most walleye pollock populations is large (genetic drift is weak) and migration is a relatively strong homogenizing force. The allozymes and mtDNA provided mostly concordant estimates of patterns of spatial genetic variation. These data showed significant genetic variation between North American and Asian populations. In addition, two spawning aggregations in the Gulf of Alaska, in Prince William Sound, and off Middleton Island, appeared genetically distinct from walleye pollock spawning in the Shelikof Strait and may merit management as a distinct stock. Finally, we found evidence of interannual genetic variation in two of three North American spawning aggregations, similar in magnitude to the spatial variation among North American walleye pol-lock. We suggest that interannual genetic variation in walleye pollock may be indicative of one or more of the following factors: highly variable reproductive success, adult philopatry, source-sink metapopulation structure, and intraannual variation (days) in spawning timing among genetically distinct but spatially identical spawning aggregates.
Resumo:
In many networked applications, independent caching agents cooperate by servicing each other's miss streams, without revealing the operational details of the caching mechanisms they employ. Inference of such details could be instrumental for many other processes. For example, it could be used for optimized forwarding (or routing) of one's own miss stream (or content) to available proxy caches, or for making cache-aware resource management decisions. In this paper, we introduce the Cache Inference Problem (CIP) as that of inferring the characteristics of a caching agent, given the miss stream of that agent. While CIP is insolvable in its most general form, there are special cases of practical importance in which it is, including when the request stream follows an Independent Reference Model (IRM) with generalized power-law (GPL) demand distribution. To that end, we design two basic "litmus" tests that are able to detect LFU and LRU replacement policies, the effective size of the cache and of the object universe, and the skewness of the GPL demand for objects. Using extensive experiments under synthetic as well as real traces, we show that our methods infer such characteristics accurately and quite efficiently, and that they remain robust even when the IRM/GPL assumptions do not hold, and even when the underlying replacement policies are not "pure" LFU or LRU. We exemplify the value of our inference framework by considering example applications.
Resumo:
An increase in edge area reduces the effective size of habitat fragments and thus the area available for habitat-interior specialists. However, it is unclear how edge effects compare at different ecotones in the same system. We investigated the response of a small mammal community associated with Afromontane forests to edge effects at three different habitat transitions: natural forest to grassland (natural edge, structurally different vegetation types), natural forest to mature plantation (human-altered edge, structurally similar vegetation types) and natural forest to harvested plantation (human-altered edge, structurally different vegetation types). We predicted that edge effects should be less severe at natural ecotones and at similarly structured contiguous vegetation types than human-altered ecotones and differently structured contiguous vegetation types, respectively. We found that forest species seemed to avoid all habitat edges in our study area. Surprisingly, natural edges supported a less diverse small mammal community than human-altered forest edges. However, edge effects were observed deeper into native forests surrounded by mature alien plantations (and more so at harvested plantations) than into native forests surrounded by native grasslands. The net effect of mature plantations was therefore to reduce the functional size of the natural forest by creating a larger edge. We suggest that when plantations are established a buffer zone of natural vegetation be left between natural forests and newly established plantations to mitigate the negative effects of plantation forestry.
Resumo:
The Neolithic and Bronze Age transitions were profound cultural shifts catalyzed in parts of Europe by migrations, first of early farmers from the Near East and then Bronze Age herders from the Pontic Steppe. However, a decades-long, unresolved controversy is whether population change or cultural adoption occurred at the Atlantic edge, within the British Isles. We address this issue by using the first whole genome data from prehistoric Irish individuals. A Neolithic woman (3343–3020 cal BC) from a megalithic burial (10.3× coverage) possessed a genome of predominantly Near Eastern origin. She had some hunter–gatherer ancestry but belonged to a population of large effective size, suggesting a substantial influx of early farmers to the island. Three Bronze Age individuals from Rathlin Island (2026–1534 cal BC), including one high coverage (10.5×) genome, showed substantial Steppe genetic heritage indicating that the European population upheavals of the third millennium manifested all of the way from southern Siberia to the western ocean. This turnover invites the possibility of accompanying introduction of Indo-European, perhaps early Celtic, language. Irish Bronze Age haplotypic similarity is strongest within modern Irish, Scottish, and Welsh populations, and several important genetic variants that today show maximal or very high frequencies in Ireland appear at this horizon. These include those coding for lactase persistence, blue eye color, Y chromosome R1b haplotypes, and the hemochromatosis C282Y allele; to our knowledge, the first detection of a known Mendelian disease variant in prehistory. These findings together suggest the establishment of central attributes of the Irish genome 4,000 y ago.
Resumo:
Affiliation: Département de Biochimie, Université de Montréal
Resumo:
1. Prochilodus lineatus (Prochilodontidae, Characiformes) is a migratory species of great economic importance both in fisheries and aquaculture that is found throughout the Jacui, Paraiba do Sul, Parana, Paraguay and Uruguay river basins in South America. Earlier population studies of P. lineatus in the rio Grande basin (Parana basin) indicated the existence of a single population; however, the range of this species has been fragmented by the construction of several dams. Such dams modified the environmental conditions and could have constrained the reproductive migration of P. lineatus, possibly leading to changes in the population genetic structure. 2. In order to evaluate how genetic diversity is allocated in the rio Grande basin, 141 specimens of P. lineatus from eight collection sites were analysed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) with 15 restriction enzymes. 3. Forty-six haplotypes were detected, and 70% of them are restricted. The mean genetic variability indexes (h = 0.7721 and pi = 1.6%) were similar to those found in natural populations with a large effective size. Fst and Exact Test values indicated a lack of structuring among the samples, and the model of isolation by distance was tested and rejected. 4. The haplotype network indicated that this population of P. lineatus has been maintained as a single variable stock with some differences in the genetic composition (haplotypes) between samples. Indications of population expansion were detected, and this finding was supported by neutrality tests and mismatch distribution analyses. 5. The present study focused on regions between dams to serve as a parameter for further evaluations of genetic variability and the putative impact of dams and repopulation programmes in natural populations of P. lineatus. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The effect of competition is an important source of variation in breeding experiments. This study aimed to compare the selection of plants of open-pollinated families of Eucalyptus with and without the use of competition covariables. Genetic values were determined for each family and tree and for the traits height, diameter at breast height and timber volume in a randomized block design, resulting in the variance components, genetic parameters, selection gains, effective size and selection coincidence, with and without the use of covariables. Intergenotypic competition is an important factor of environmental variation. The use of competition covariables generally reduces the estimates of variance components and influences genetic gains in the studied traits. Intergenotypic competition biases the selection of open-pollinated eucalypt progenies, and can result in an erroneous choice of superior genotypes; the inclusion of covariables in the model reduces this influence.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)