989 resultados para Effective refractory period
Resumo:
Introduction: Extensive experimental studies and clinical evidence (Metabolic Efficiency with Ranzolazine for Less Ischemia in Non-ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction-36 [MERLIN TIMI-36] trial) indicate potential antiarrhythmic efficacy of the antianginal agent ranolazine. Delivery of agents into the pericardial space allows high local concentrations to be maintained in close proximity to myocardial tissue while systemic effects are minimized. Methods and Results: The effects of intrapericardial (IPC) administration of ranolazine (50-mg bolus) on right atrial and right ventricular effective refractory periods (ERP), atrial fibrillation threshold, and ventricular fibrillation threshold were determined in 17 closed-chest anesthetized pigs. IPC ranolazine increased atrial ERP in a time-dependent manner from 129 +/- 5.14 to 186 +/- 9.78 ms (P < 0.01, N = 7) but did not significantly affect ventricular ERP (from 188.3 +/- 4.6 to 201 +/- 4.3 ms (NS, N = 6). IPC ranolazine increased atrial fibrillation threshold from 4.8 +/- 0.8 to 28 +/- 2.3 mA (P < 0.03, N = 6) and ventricular fibrillation threshold (from 24 +/- 3.56 baseline to 29.33 +/- 2.04 mA at 10-20 minutes, P < 0.03, N = 6). No significant change in mean arterial pressure was observed (from 92.8 +/- 7.1 to 74.8 +/- 7.5 mm Hg, P < 0.125, N = 5, at 7 minutes). Conclusions: IPC ranolazine exhibits striking atrial antiarrhythmic actions as evidenced by increases in refractoriness and in fibrillation inducibility without significantly altering mean arterial blood pressure. Ranolazine`s effects on the atria appear to be more potent than those on the ventricles.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
The psychological refractory period (PRP) refers to a delay of response times (RT) to the second of two stimuli when these stimuli are presented in rapid succession. If this limitation of rapidly processing the second stimulus contributes to the well-known differences in speed of information processing between individuals with higher and lower mental ability, individuals with lower mental ability should exhibit a more pronounced PRP effect than individuals with higher mental ability. Previous studies on this question, however, yielded inconsistent results. In the present study, we assessed mental ability-related differences in the PRP by measuring lateralized readiness potentials (LRPs) to separate premotor and motor aspects of speed of information processing in 95 individuals with higher and 95 individuals with lower mental ability. Although individuals with higher mental ability processed information faster than individuals with lower mental ability as indicated by shorter RTs and shorter premotor LRP latencies, the PRP effect was equally pronounced in both groups. These findings suggest that the processes underlying the PRP effect do not contribute to mental ability-related differences in speed of information processing. Rather, these differences seem to occur at an earlier stage of information processing such as stimulus encoding, stimulus analysis, or stimulus evaluation.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Introduction: In vitro studies and ambulatory ECG recordings from the MERLIN TIMI-36 clinical trial suggest that the novel antianginal agent ranolazine may have the potential to suppress atrial arrhythmias. However, there are no reports of effects of ranolazine on atrial electrophysiologic properties in large intact animals. Methods and Results: In 12 closed-chest anesthetized pigs, effects of intravenous ranolazine (similar to 9 mu M plasma concentration) on multisite atrial effective refractory period (ERP), conduction time (CT), and duration and inducibility of atrial fibrillation (AF) initiated by intrapericardial acetylcholine were investigated. Ranolazine increased ERP by a median of 45 ms (interquartile range 29-50 ms; P < 0.05, n = 6) in right and left atria compared to control at pacing cycle length (PCL) of 400 ms. However, ERP increased by only 28 (24-34) ms in right ventricle (P < 0.01, n = 6). Ranolazine increased atrial CT from 89 (71-109) ms to 98 (86-121) ms (P = 0.04, n = 6) at PCL of 400 ms. Ranolazine decreased AF duration from 894 (811-1220) seconds to 621 (549-761) seconds (P = 0.03, n = 6). AF was reinducible in 1 of 6 animals after termination with ranolazine compared with all 6 animals during control period (P = 0.07). Dominant frequency (DF) of AF was reduced by ranolazine in left atrium from 11.7 (10.7-20.5) Hz to 7.6 (2.9-8.8) Hz (P = 0.02, n = 6). Conclusions: Ranolazine, at therapeutic doses, increased atrial ERP to greater extent than ventricular ERP and prolonged atrial CT in a frequency-dependent manner in the porcine heart. AF duration and DF were also reduced by ranolazine. Potential role of ranolazine in AF management merits further investigation. (J Cardiovasc Electrophysiol, Vol. 20, pp. 796-802, July 2009).
Resumo:
INTRODUCTION: Vagal activity is thought to influence atrial electrophysiological properties and play a role in the initiation and maintenance of atrial fibrillation (AF). In this study, we assessed the effects of acute vagal stimulation (vagus_stim) on atrial conduction times, atrial and pulmonary vein (PV) refractoriness, and vulnerability to induction of AF in the rabbit heart with intact autonomic innervation. METHODS: An open-chest epicardial approach was performed in 11 rabbits (New Zealand; 3.9-5.0 kg), anesthetized and artificially ventilated after neuromuscular blockade. A 3-lead ECG was obtained. Atrial electrograms were recorded along the atria, from right to left (four monopolar electrodes), together with a circular electrode adapted for proximal left PV assessment. Acute vagus nerve stimulation was obtained with bipolar electrodes (20 Hz). Epicardial activation was recorded in sinus rhythm, and the conduction time from right (RA) to left atrium (LA), and from RA to PVs, was measured in basal conditions and during vagus_stim. The atrial effective refractory period (ERP) and dispersion of refractoriness (Disp_A) were analyzed. Vulnerability to AF induction was assessed at the right (RAA) and left (LAA) atrial appendages and the PVs. Atrial stimulation (50 Hz) was performed alone or combined with vagus_stim. Heart rate and blood pressure were monitored. RESULTS: In basal conditions, there was a significant delay in conduction from RA to PVs, not influenced by vagus_stim, and the PV ERPs were shorter than those measured in LA and LAA, but without significant differences compared to RA and RAA. During vagus_stim, conduction times between RA and LA increased from 16+8 ms to 27+6 ms (p < 0.05) and ERPs shortened significantly in RA, LAA and LA (p < 0.05), but not in RAA. There were no significant differences in Disp_A. AF induction was reproducible in 45% of cases at 50 Hz and in 100% at 50 Hz+vagus_stim (p < 0.05). The duration of inducible AF increased from 1.0 +/- 0.2 s to 12.0 +/- 4.5 s with 50 Hz+vagus_stim (p < 0.01). AF lasted >10 s in 45.4% of rabbits during vagus_stim, and ceased after vagus_stim in 4 out of these 5 cases. In 3 animals, PV tachycardia, with fibrillatory conduction, induced with 50 Hz PV pacing during vagus_stim. CONCLUSIONS: Vagus_stim reduces interatrial conduction velocity and significantly shortens atrial ERP, contributing to the induction and duration of AF episodes in the in vivo rabbit heart. This model may be useful for the assessment of autonomic influence on the pathophysiology of AF.
Resumo:
Atrial electrical remodeling plays a part in recurrence of atrial fibrillation (AF). It has been related to an increase in heterogeneity of atrial refractoriness that facilitates the occurrence of multiple reentry wavelets and vulnerability to AF. AIM: To examine the relationship between dispersion of atrial refractoriness (Disp_A) and vulnerability to AF induction (A_Vuln) in patients with clinical paroxysmal AF (PAF). METHODS: Thirty-six patients (22 male; age 55+/-13 years) with > or =1 year of history of PAF (no underlying structural heart disease--n=20, systemic hypertension--n=14, mitral valve prolapse--n=1, surgically corrected pulmonary stenosis--n=1), underwent electrophysiological study (EPS) while off medication. The atrial effective refractory period (AERP) was assessed at five different sites--high (HRA) and low (LRA) lateral right atrium, high interatrial septum (IAS), proximal (pCS) and distal (dCS) coronary sinus--during a cycle length of 600 ms. AERP was taken as the longest S1-S2 interval that failed to initiate a propagation response. Disp_A was calculated as the difference between the longest and shortest AERP. A_Vuln was defined as the ability to induce AF with 1-2 extrastimuli or with incremental atrial pacing (600-300 ms) from the HRA or dCS. The EPS included analysis of focal electrical activity based on the presence of supraventricular ectopic beats (spontaneous or with provocative maneuvers). The patients were divided into group A--AF inducible (n=25) and group B--AF not inducible (n=11). Disp_A was analyzed to determine any association with A_Vuln. Disp_A and A_Vuln were also examined in those patients with documented repetitive focal activity. Logistic regression was used to determine any association of the following variables with A_Vuln: age, systemic hypertension, left ventricular hypertrophy, left atrial size, left ventricular function, duration of PAF, documented atrial flutter/tachycardia and Disp_A. RESULTS: There were no significant differences between the groups with regard to clinical characteristics and echocardiographic data. AF was inducible in 71% of the patients and noninducible in 29%. Group A had greater Disp_A compared to group B (105+/-78 ms vs. 49+/-20 ms; p=0.01). Disp_A was >40 ms in 50% of the patients without A_Vuln and in 91% of those with A_Vuln (p=0.05). Focal activity was demonstrated in 14 cases (39%), 57% of them with A_Vuln. Disp_A was 56+/-23 ms in this group and 92+/-78 ms in the others (p=0.07). Using logistic regression, the only predictor of A_Vuln was Disp_A (p=0.05). CONCLUSION: In patients with paroxysmal AF, Disp_A is a major determinant of A_Vuln. Nevertheless, the degree of nonuniformity of AERP appears to be less important as an electrophysiological substrate for AF due to focal activation.
Resumo:
The impact of atrial dispersion of refractoriness (Disp_A) in the inducibility and maintenance of atrial fibrillation (AF) has not been fully resolved. AIM: To study the Disp_A and the vulnerability (A_Vuln) for the induction of self-limited (<60 s) and sustained episodes of AF. METHODS AND RESULTS: Forty-seven patients with paroxysmal AF (PAF): 29 patients without structural heart disease and 18 with hypertensive heart disease. Atrial effective refractory period (ERP) was assessed at five sites--right atrial appendage and low lateral right atrium, high interatrial septum, proximal and distal coronary sinus. We compared three groups: group A - AF not inducible (n=13); group B - AF inducible, self-limited (n=18); group C - AF inducible, sustained (n=16). Age, lone AF, hypertension, left atrial and left ventricular (LV) dimensions, LV systolic function, duration of AF history, atrial flutter/tachycardia, previous antiarrhythmics, and Disp_A were analysed with logistic regression to determine association with A_Vuln for AF inducibility. The ERP at different sites showed no differences among the groups. Group A had a lower Disp_A compared to group B (47+/-20 ms vs 82+/-65 ms; p=0.002), and when compared to group C (47+/-20 ms vs 80+/-55 ms; p=0.008). There was no significant difference in Disp_A between groups B and C. By means of multivariate regression analysis, the only predictor of A_Vuln was Disp_A (p=0.04). Conclusion: In patients with PAF, increased Disp_A represents an electrophysiological marker of A_Vuln. Inducibility of both self-limited and sustained episodes of AF is associated with similar values of Disp_A. These findings suggest that the maintenance of AF is influenced by additional factors.
Resumo:
AIMS: Experimental models have reported conflicting results regarding the role of dispersion of repolarization in promoting atrial fibrillation (AF). Repolarization alternans, a beat-to-beat alternation in action potential duration, enhances dispersion of repolarization when propagation velocity is involved. METHODS AND RESULTS: In this work, original electrophysiological parameters were analysed to study AF susceptibility in a chronic sheep model of pacing-induced AF. Two pacemakers were implanted, each with a single right atrial lead. Right atrial depolarization and repolarization waves were documented at 2-week intervals. A significant and gradual decrease in the propagation velocity at all pacing rates and in the right atrial effective refractory period (ERP) was observed during the weeks of burst pacing before sustained AF developed when compared with baseline conditions. Right atrial repolarization alternans was observed, but because of the development of 2/1 atrioventricular block with far-field ventricular interference, its threshold could not be precisely measured. Non-sustained AF was not observed at baseline, but appeared during the electrical remodelling in association with a decrease in both ERP and propagation velocity. CONCLUSION: We report here on the feasibility of measuring ERP, atrial repolarization alternans, and propagation velocity kinetics and their potential in predicting susceptibility to AF in a free-behaving model of pacing-induced AF using the standard pacemaker technology.