880 resultados para Effective medium theory
Resumo:
The effective medium theory for a system with randomly distributed point conductivity and polarisability is reformulated, with attention to cross-terms involving the two disorder parameters. The treatment reveals a certain inconsistency of the conventional theory owing to the neglect of the Maxwell-Wagner effect. The results are significant for the critical resistivity and dielectric anomalies of a binary liquid mixture at the phase separation point.
Extended effective medium model for refractive indices of thin films with oblique columnar structure
Resumo:
The refractive indices of thin films, containing dielectric and voids in an oblique columnar structure, are modeled by extended effective medium in the quasi-static limit. The dielectric function is shown to be strongly dependent on the angle of incidence and on the columnar orientation for p-polarized light. This model is applied to model ZrO2 thin films with oblique columnar structures and the computed results, with the Maxwell Garnett, the Bragg-Pippard, and the Bruggeman formalisms, have been given. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Based on the effective medium approximation theory of composites, the empirical model proposed by Pandey and Kakar is remedied to investigate the microwave emissivity of sea surface under wave breaking driven by strong wind. In the improved model, the effects of seawater bubbles, droplets and difference in temperature of air and sea interface (DTAS) on the emissivity of sea surface covered by whitecaps are discussed. The model results indicate that the effective emissivity of sea surface increases with DTAS increasing, and the impacts of bubble structures and thickness of whitecaps layer on the emissivity are included in the model by introducing the effective dielectric constant of whitecaps layer. Moreover, a good agreement is obtained by comparing the model results with the Rose's experimental data.
Resumo:
The refractive indices of thin films, containing dielectric and voids in an oblique columnar structure, are, modelled in the quasi-static limit. The dielectric function is shown to be strongly dependent on the angle of incidence and on the columnar orientation for p-polarized light. This model is applied to model ZnS thin films with oblique columnar structures and the computed results have been given.
Resumo:
The electronic structures in the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that (1) electronic energy levels decrease monotonically, and the energy difference between the energy levels increases as the GaAs quantum dot (QD) height increases; (2) strong state mixing is found between the different energy levels as the GaAs QD width changes; (3) the hole energy levels decrease more quickly than those of the electrons as the GaAs QD size increases; (4) in excited states, the hole energy levels are closer to each other than the electron ones; (5) the first heavy- and light-hole transition energies are very close. Our theoretical results agree well with the available experimental data. Our calculated results are useful for the application of the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices.
Resumo:
The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.
Resumo:
The electronic structures of GaAs/Ga1-xAlxAs quantum wires (corrugated superlattices) grown on (311)-oriented substrates are studied in the framework of the effective-mass envelope-function method. The electron and hole subband structure and optical transition matrix elements are calculated. When x=1, the results are compared with experiments, and it is found that the direct transition becomes an indirect transition as the widths of well and barrier become smaller.
Resumo:
An effective-mass formulation for superlattices grown on (11N)-oriented substrates is given. It is found that, for GaAs/AlxGa1-xAs superlattices, the hole subband structure and related properties are sensitive to the orientation because of the large anisotropy of the valence band. The energy-level positions for the heavy hole and the optical transition matrix elements for the light hole apparently change with orientation. The heavy- and light-hole energy levels at k parallel-to = 0 can be calculated separately by taking the classical effective mass in the growth direction. Under a uniaxial stress along the growth direction, the energy levels of the heavy and light holes shift down and up, respectively; at a critical stress, the first heavy- and light-hole energy levels cross over. The energy shifts caused by the uniaxial stress are largest for the (111) case and smallest for the (001) case. The optical transition matrix elements change substantially after the crossover of the first heavy- and light-hole energy has occurred.
Resumo:
By using the recently developed exact effective-mass envelope-function theory, the electronic structures of InAs/GaAs strained superlattices grown on GaAs (100) oriented substrates are studied. The electron and hole subband structures, distribution of electrons and holes along the growth direction, optical transition matrix elements, exciton states, and absorption spectra are calculated. In our calculations, the effects due to the different effective masses of electrons and holes in different materials and the strain are included. Our theoretical results are in agreement with the available experimental data.
Resumo:
In the framework of effective-mass envelope-function theory, the optical transitions of InAs/GaAs strained coupled quantum dots grown on GaAs (100) oriented substrates are studied. At the Gamma point, the electron and hole energy levels, the distribution of electron and hole wave functions along the growth and parallel directions, the optical transition-matrix elements, the exciton states, and absorption spectra are calculated. In calculations, the effects due to the different effective masses of electrons and holes in different materials are included. Our theoretical results are in good agreement with the available experimental data.
Resumo:
We extend the relativistic mean field theory model of Sugahara and Toki by adding new couplings suggested by modern effective field theories. An improved set of parameters is developed with the goal to test the ability of the models based on effective field theory to describe the properties of finite nuclei and, at the same time, to be consistent with the trends of Dirac-Brueckner-Hartree-Fock calculations at densities away from the saturation region. We compare our calculations with other relativistic nuclear force parameters for various nuclear phenomena.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)