802 resultados para Effective Elastic-Moduli
Resumo:
Many biological materials are known to be anisotropic. In particular, microstructural components of biological materials may grow in a preferred direction, giving rise to anisotropy in the microstructure. Nanoindentation has been shown to be an effective technique for determining the mechanical properties of microstructures as small as a few microns. However, the effects of anisotropy on the properties measured by nanoindentation have not been fully addressed. This study presents a method to account for the effects of anisotropy on elastic properties measured by nanoindentation. This method is used to correlate elastic properties determined from earlier nanoindentation experiments and from earlier ultrasonic velocity measurements in human tibial cortical bone. Also presented is a procedure to determine anisotropic elastic moduli from indentation measurements in multiple directions. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res.
Resumo:
Most cellular solids are random materials, while practically all theoretical structure-property results are for periodic models. To be able to generate theoretical results for random models, the finite element method (FEM) was used to study the elastic properties of solids with a closed-cell cellular structure. We have computed the density (rho) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (PR) for several different isotropic random models based on Voronoi tessellations and level-cut Gaussian random fields. The effect of partially open cells is also considered. The results, which are best described by a power law E infinity rho (n) (1<n<2), show the influence of randomness and isotropy on the properties of closed-cell cellular materials, and are found to be in good agreement with experimental data. (C) 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dynamical Elastic Moduli of the Ti-13Nb-13Zr biomaterial alloy were obtained using the mechanical spectroscopy technique. The sample with heat treatment at 1170K for 30 minutes and water quenched with subsequent aging treatment at 670 K for 3 hours (TNZ + WQ + 670 K/3 h), was characterized through decay of free oscillations of the sample in the flexural vibration mode. The spectra of anelastic relaxation (internal friction and frequency) in the temperature range from 300 K to 625 K not revealed the presence of relaxation process. As shown in the literature, the hcp structure usually does not exhibit any relaxation due to the symmetry of the sites in the crystalline lattice, but if there is some relaxation, this only occurs in special cases such as low concentration of zirconium or saturation of the stoichiometric ratio of oxygen for zirconium. Dynamical elastic modulus obtained for TNZ + WQ + 670 K/3 h alloy was 87 GPa at room temperature, which is higher than the value for Ti-13Nb-13Zr alloy (64 GPa) of the literature. This increment may be related to the change of the proportion of α and β phases. Besides that, the presence of precipitates in the alloy after aging treatment hardens the material and reduces its ductility.
Resumo:
Compressional (Vp) and shear (Vs) wave velocities have been measured to 10 kb in 32 cores of basalt from 14 Pacific sites of the Deep Sea Drilling Project. Both Vp and V s show wide ranges (3.70 to 6.38 km/sec for Vp and 1.77 to 3.40 km/sec for V s at 0.5 kb) which are linearly related to density and sea floor age, confirming earlier findings by Christensen and Salisbury of decreasing velocity with progressive submarine weathering based on studies of basalts from five sites in the Atlantic. Combined Pacific and Atlantic data give rates of decreasing velocity of -1.89 and -1.35 km/sec per 100 my for Vp and Vs respectively. New analyses of oceanic seismic refraction data indicate a decrease in layer 2 velocities with age similar to that observed in the laboratory, suggesting that weathering penetrates to several hundred meters in many regions and is largely responsible for the extreme range and variability of layer 2 refraction velocities.
Resumo:
"Project No. 7531, Task No. 73521."
Resumo:
Seismic velocities in rocks are influenced by the properties of the solid, the pore fluid, and the pore space. Cracks dramatically affect seismic velocities in rocks; their influence on the effective elastic moduli of rocks depends on their shape and concentration. Thin cracks (or fractures) substantially lower the moduli of a rock relative to the effect of spherical voids (or vesicles), and lower moduli are reflected by lower P- and S-wave velocities. The objective of this research is to determine the types and concentrations of cracks and their influence on the seismic properties of subaerially erupted basalts drilled from Hole 990A on the Southeast Greenland margin during Ocean Drilling Program Leg 163. Ellipsoidal cracks are used to model the voids in the rocks. The elastic moduli of the solid (grains) are also free parameters in the inverse modeling procedure. The apparent grain moduli reflect a weighted average of the moduli of the constituent minerals (e.g., plagioclase, augite, and clay minerals). The results indicate that (1) there is a strong relationship between P-wave velocity and porosity, suggesting a similarity of pore shape distributions, (2) the distribution of crack types within the massive, central region of aa flows from Hole 990A is independent of total porosity, (3) thin cracks are the first to be effectively sealed by alteration products, and (4) grain densities (an alteration index) and apparent grain moduli of the basalt samples are directly related.
Resumo:
A finite-element method is used to study the elastic properties of random three-dimensional porous materials with highly interconnected pores. We show that Young's modulus, E, is practically independent of Poisson's ratio of the solid phase, nu(s), over the entire solid fraction range, and Poisson's ratio, nu, becomes independent of nu(s) as the percolation threshold is approached. We represent this behaviour of nu in a flow diagram. This interesting but approximate behaviour is very similar to the exactly known behaviour in two-dimensional porous materials. In addition, the behaviour of nu versus nu(s) appears to imply that information in the dilute porosity limit can affect behaviour in the percolation threshold limit. We summarize the finite-element results in terms of simple structure-property relations, instead of tables of data, to make it easier to apply the computational results. Without using accurate numerical computations, one is limited to various effective medium theories and rigorous approximations like bounds and expansions. The accuracy of these equations is unknown for general porous media. To verify a particular theory it is important to check that it predicts both isotropic elastic moduli, i.e. prediction of Young's modulus alone is necessary but not sufficient. The subtleties of Poisson's ratio behaviour actually provide a very effective method for showing differences between the theories and demonstrating their ranges of validity. We find that for moderate- to high-porosity materials, none of the analytical theories is accurate and, at present, numerical techniques must be relied upon.
Resumo:
The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters
Resumo:
The computational design of a composite where the properties of its constituents change gradually within a unit cell can be successfully achieved by means of a material design method that combines topology optimization with homogenization. This is an iterative numerical method, which leads to changes in the composite material unit cell until desired properties (or performance) are obtained. Such method has been applied to several types of materials in the last few years. In this work, the objective is to extend the material design method to obtain functionally graded material architectures, i.e. materials that are graded at the local level (e.g. microstructural level). Consistent with this goal, a continuum distribution of the design variable inside the finite element domain is considered to represent a fully continuous material variation during the design process. Thus the topology optimization naturally leads to a smoothly graded material system. To illustrate the theoretical and numerical approaches, numerical examples are provided. The homogenization method is verified by considering one-dimensional material gradation profiles for which analytical solutions for the effective elastic properties are available. The verification of the homogenization method is extended to two dimensions considering a trigonometric material gradation, and a material variation with discontinuous derivatives. These are also used as benchmark examples to verify the optimization method for functionally graded material cell design. Finally the influence of material gradation on extreme materials is investigated, which includes materials with near-zero shear modulus, and materials with negative Poisson`s ratio.
Resumo:
Shear deformation of fault gouge or other particulate materials often results in observed strain localization, or more precisely, the localization of measured deformation gradients. In conventional elastic materials the strain localization cannot take place therefore this phenomenon is attributed to special types of non-elastic constitutive behaviour. For particulate materials however the Cosserat continuum which takes care of microrotations independent of displacements is a more appropriate model. In elastic Cosserat continuum the localization in displacement gradients is possible under some combinations of the generalized Cosserat elastic moduli. The same combinations of parameters also correspond to a considerable dispersion in shear wave propagation which can be used for independent experimental verification of the proposed mechanism of apparent strain localization in fault gouge.
Resumo:
Tese de Doutoramento em Ciência e Engenharia de Polímeros e Compósitos
Resumo:
Understanding and quantifying seismic energy dissipation, which manifests itself in terms of velocity dispersion and attenuation, in fluid-saturated porous rocks is of considerable interest, since it offers the perspective of extracting information with regard to the elastic and hydraulic rock properties. There is increasing evidence to suggest that wave-induced fluid flow, or simply WIFF, is the dominant underlying physical mechanism governing these phenomena throughout the seismic, sonic, and ultrasonic frequency ranges. This mechanism, which can prevail at the microscopic, mesoscopic, and macroscopic scale ranges, operates through viscous energy dissipation in response to fluid pressure gradients and inertial effects induced by the passing wavefield. In the first part of this thesis, we present an analysis of broad-band multi-frequency sonic log data from a borehole penetrating water-saturated unconsolidated glacio-fluvial sediments. An inherent complication arising in the interpretation of the observed P-wave attenuation and velocity dispersion is, however, that the relative importance of WIFF at the various scales is unknown and difficult to unravel. An important generic result of our work is that the levels of attenuation and velocity dispersion due to the presence of mesoscopic heterogeneities in water-saturated unconsolidated clastic sediments are expected to be largely negligible. Conversely, WIFF at the macroscopic scale allows for explaining most of the considered data while refinements provided by including WIFF at the microscopic scale in the analysis are locally meaningful. Using a Monte-Carlo-type inversion approach, we compare the capability of the different models describing WIFF at the macroscopic and microscopic scales with regard to their ability to constrain the dry frame elastic moduli and the permeability as well as their local probability distribution. In the second part of this thesis, we explore the issue of determining the size of a representative elementary volume (REV) arising in the numerical upscaling procedures of effective seismic velocity dispersion and attenuation of heterogeneous media. To this end, we focus on a set of idealized synthetic rock samples characterized by the presence of layers, fractures or patchy saturation in the mesocopic scale range. These scenarios are highly pertinent because they tend to be associated with very high levels of velocity dispersion and attenuation caused by WIFF in the mesoscopic scale range. The problem of determining the REV size for generic heterogeneous rocks is extremely complex and entirely unexplored in the given context. In this pilot study, we have therefore focused on periodic media, which assures the inherent self- similarity of the considered samples regardless of their size and thus simplifies the problem to a systematic analysis of the dependence of the REV size on the applied boundary conditions in the numerical simulations. Our results demonstrate that boundary condition effects are absent for layered media and negligible in the presence of patchy saturation, thus resulting in minimum REV sizes. Conversely, strong boundary condition effects arise in the presence of a periodic distribution of finite-length fractures, thus leading to large REV sizes. In the third part of the thesis, we propose a novel effective poroelastic model for periodic media characterized by mesoscopic layering, which accounts for WIFF at both the macroscopic and mesoscopic scales as well as for the anisotropy associated with the layering. Correspondingly, this model correctly predicts the existence of the fast and slow P-waves as well as quasi and pure S-waves for any direction of wave propagation as long as the corresponding wavelengths are much larger than the layer thicknesses. The primary motivation for this work is that, for formations of intermediate to high permeability, such as, for example, unconsolidated sediments, clean sandstones, or fractured rocks, these two WIFF mechanisms may prevail at similar frequencies. This scenario, which can be expected rather common, cannot be accounted for by existing models for layered porous media. Comparisons of analytical solutions of the P- and S-wave phase velocities and inverse quality factors for wave propagation perpendicular to the layering with those obtained from numerical simulations based on a ID finite-element solution of the poroelastic equations of motion show very good agreement as long as the assumption of long wavelengths remains valid. A limitation of the proposed model is its inability to account for inertial effects in mesoscopic WIFF when both WIFF mechanisms prevail at similar frequencies. Our results do, however, also indicate that the associated error is likely to be relatively small, as, even at frequencies at which both inertial and scattering effects are expected to be at play, the proposed model provides a solution that is remarkably close to its numerical benchmark. -- Comprendre et pouvoir quantifier la dissipation d'énergie sismique qui se traduit par la dispersion et l'atténuation des vitesses dans les roches poreuses et saturées en fluide est un intérêt primordial pour obtenir des informations à propos des propriétés élastique et hydraulique des roches en question. De plus en plus d'études montrent que le déplacement relatif du fluide par rapport au solide induit par le passage de l'onde (wave induced fluid flow en anglais, dont on gardera ici l'abréviation largement utilisée, WIFF), représente le principal mécanisme physique qui régit ces phénomènes, pour la gamme des fréquences sismiques, sonique et jusqu'à l'ultrasonique. Ce mécanisme, qui prédomine aux échelles microscopique, mésoscopique et macroscopique, est lié à la dissipation d'énergie visqueuse résultant des gradients de pression de fluide et des effets inertiels induits par le passage du champ d'onde. Dans la première partie de cette thèse, nous présentons une analyse de données de diagraphie acoustique à large bande et multifréquences, issues d'un forage réalisé dans des sédiments glaciaux-fluviaux, non-consolidés et saturés en eau. La difficulté inhérente à l'interprétation de l'atténuation et de la dispersion des vitesses des ondes P observées, est que l'importance des WIFF aux différentes échelles est inconnue et difficile à quantifier. Notre étude montre que l'on peut négliger le taux d'atténuation et de dispersion des vitesses dû à la présence d'hétérogénéités à l'échelle mésoscopique dans des sédiments clastiques, non- consolidés et saturés en eau. A l'inverse, les WIFF à l'échelle macroscopique expliquent la plupart des données, tandis que les précisions apportées par les WIFF à l'échelle microscopique sont localement significatives. En utilisant une méthode d'inversion du type Monte-Carlo, nous avons comparé, pour les deux modèles WIFF aux échelles macroscopique et microscopique, leur capacité à contraindre les modules élastiques de la matrice sèche et la perméabilité ainsi que leur distribution de probabilité locale. Dans une seconde partie de cette thèse, nous cherchons une solution pour déterminer la dimension d'un volume élémentaire représentatif (noté VER). Cette problématique se pose dans les procédures numériques de changement d'échelle pour déterminer l'atténuation effective et la dispersion effective de la vitesse sismique dans un milieu hétérogène. Pour ce faire, nous nous concentrons sur un ensemble d'échantillons de roches synthétiques idéalisés incluant des strates, des fissures, ou une saturation partielle à l'échelle mésoscopique. Ces scénarios sont hautement pertinents, car ils sont associés à un taux très élevé d'atténuation et de dispersion des vitesses causé par les WIFF à l'échelle mésoscopique. L'enjeu de déterminer la dimension d'un VER pour une roche hétérogène est très complexe et encore inexploré dans le contexte actuel. Dans cette étude-pilote, nous nous focalisons sur des milieux périodiques, qui assurent l'autosimilarité des échantillons considérés indépendamment de leur taille. Ainsi, nous simplifions le problème à une analyse systématique de la dépendance de la dimension des VER aux conditions aux limites appliquées. Nos résultats indiquent que les effets des conditions aux limites sont absents pour un milieu stratifié, et négligeables pour un milieu à saturation partielle : cela résultant à des dimensions petites des VER. Au contraire, de forts effets des conditions aux limites apparaissent dans les milieux présentant une distribution périodique de fissures de taille finie : cela conduisant à de grandes dimensions des VER. Dans la troisième partie de cette thèse, nous proposons un nouveau modèle poro- élastique effectif, pour les milieux périodiques caractérisés par une stratification mésoscopique, qui prendra en compte les WIFF à la fois aux échelles mésoscopique et macroscopique, ainsi que l'anisotropie associée à ces strates. Ce modèle prédit alors avec exactitude l'existence des ondes P rapides et lentes ainsi que les quasis et pures ondes S, pour toutes les directions de propagation de l'onde, tant que la longueur d'onde correspondante est bien plus grande que l'épaisseur de la strate. L'intérêt principal de ce travail est que, pour les formations à perméabilité moyenne à élevée, comme, par exemple, les sédiments non- consolidés, les grès ou encore les roches fissurées, ces deux mécanismes d'WIFF peuvent avoir lieu à des fréquences similaires. Or, ce scénario, qui est assez commun, n'est pas décrit par les modèles existants pour les milieux poreux stratifiés. Les comparaisons des solutions analytiques des vitesses des ondes P et S et de l'atténuation de la propagation des ondes perpendiculaires à la stratification, avec les solutions obtenues à partir de simulations numériques en éléments finis, fondées sur une solution obtenue en 1D des équations poro- élastiques, montrent un très bon accord, tant que l'hypothèse des grandes longueurs d'onde reste valable. Il y a cependant une limitation de ce modèle qui est liée à son incapacité à prendre en compte les effets inertiels dans les WIFF mésoscopiques quand les deux mécanismes d'WIFF prédominent à des fréquences similaires. Néanmoins, nos résultats montrent aussi que l'erreur associée est relativement faible, même à des fréquences à laquelle sont attendus les deux effets d'inertie et de diffusion, indiquant que le modèle proposé fournit une solution qui est remarquablement proche de sa référence numérique.