939 resultados para Effect of water
Resumo:
The fate and transport of three herbicides commonly used in rice production in Japan were compared using two water management practices. The herbicides were simetryn, thiobencarb and mefenacet. The first management practice was an intermittent irrigation scheme using an automatic irrigation system (AI) with a high drainage gate and the second one was a continuous irrigation and overflow drainage scheme (CI) in experimental paddy fields. Dissipation of the herbicides appeared to follow first order kinetics with the half-lives (DT50) of 1.6-3.4 days and the DT90 (90% dissipation) of 7.4-9.8 days. The AI scheme had little drainage even during large rainfall events thus resulting in losses of less than 4% of each applied herbicide through runoff. Meanwhile the CI scheme resulted in losses of about 37%, 12% and 35% of the applied masses of simetryn, thiobencarb and mefenacet, respectively. The intermittent irrigation scheme using an automatic irrigation system with a high drainage gate saved irrigation water and prevented herbicide runoff whereas the continuous irrigation and overflow scheme resulted in significant losses of water as well as the herbicides. Maintaining the excess water storage is important for preventing paddy water runoff during significant rainfall events. The organic carbon partition coefficient Koc seems to be a strong indicator of the aquatic fate of the herbicide as compared to the water solubility (SW). However, further investigations are required to understand the relation between Koc and the agricultural practices upon the pesticide fate and transport. An extension of the water holding period up to 10 days after herbicide application based on the DT90 from the currently specified period of 3-4 days in Japan is recommended to be a good agricultural practice for controlling the herbicide runoff from paddy fields. Also, the best water management practice, which can be recommended for use during the water holding period, is the intermittent irrigation scheme using an automatic irrigation system with a high drainage gate. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Cabomba caroliniana is a submersed aquatic macrophyte that originates from the Americas and is currently invading temperate, subtropical, and tropical freshwater habitats around the world. Despite being a nuisance in many countries, little is known about its ecology. We monitored C. caroliniana populations in three reservoirs in subtropical Queensland, Australia, over 5.5 years. Although biomass, stem length, and plant density of the C. caroliniana stands fluctuated over time, they did not exhibit clear seasonal patterns. Water depth was the most important environmental factor explaining C. caroliniana abundance. Plant biomass was greatest at depths from 2–4 m and rooted plants were not found beyond 5 m. Plant density was greatest in shallow water and decreased with depth, most likely as a function of decreasing light and increasing physical stress. We tested the effect of a range of water physico-chemical parameters. The concentration of phosphorus in the water column was the variable that explained most of the variation in C. caroliniana population parameters. We found that in subtropical Australia, C. caroliniana abundance does not appear to be affected by seasonal conditions but is influenced by other environmental variables such as water depth and nutrient loading. Therefore, further spread will more likely be governed by local habitat rather than climatic conditions.
Resumo:
Cabomba caroliniana is a submersed aquatic macrophyte that originates from the Americas and is currently invading temperate, subtropical, and tropical freshwater habitats around the world. Despite being a nuisance in many countries, little is known about its ecology. We monitored C. caroliniana populations in three reservoirs in subtropical Queensland, Australia, over 5.5 years. Although biomass, stem length, and plant density of the C. caroliniana stands fluctuated over time, they did not exhibit clear seasonal patterns. Water depth was the most important environmental factor explaining C. caroliniana abundance. Plant biomass was greatest at depths from 2–4 m and rooted plants were not found beyond 5 m. Plant density was greatest in shallow water and decreased with depth, most likely as a function of decreasing light and increasing physical stress. We tested the effect of a range of water physico-chemical parameters. The concentration of phosphorus in the water column was the variable that explained most of the variation in C. caroliniana population parameters. We found that in subtropical Australia, C. caroliniana abundance does not appear to be affected by seasonal conditions but is influenced by other environmental variables such as water depth and nutrient loading. Therefore, further spread will more likely be governed by local habitat rather than climatic conditions.
Resumo:
Generation of raw materials for dry powder inhalers by different size reduction methods can be expected to influence physical and chemical properties of the powders. This can cause differences in particle size, size distribution, shape, crystalline properties, surface texture and energy. These physical properties of powders influence the behaviour of particles before and after inhalation. Materials with an amorphous surface have different surface energy compared to materials with crystalline surface. This can affect the adhesion and cohesion of particles. Changes in the surface nature of the drug particles results in a change in product performance. By stabilization of the raw materials the amorphous surfaces are converted into crystalline surfaces. The primary aim of the study was to investigate the influence of the surface properties of the inhalation particles on the quality of the product. The quality of the inhalation product is evaluated by measuring the fine particle dose (FPD). FDP is the total dose of particles with aerodynamic diameters smaller than 5,0 μm. The secondary aim of this study was to achieve the target level of the FPD and the stability of the FPD. This study was also used to evaluate the importance of the stabilization of the inhalation powders. The study included manufacturing and analysing drug substance 200 μg/dose inhalation powder batches using non-stabilized or stabilized raw materials. The inhaler formulation consisted of micronized drug substance, lactose <100μm and micronized lactose <10μm. The inhaler device was Easyhaler®. Stabilization of the raw materials was done in different relative humidity, temperature and time. Surface properties of the raw materials were studied by dynamic vapour sorption, scanning electron microscopy and three-point nitrogen adsorption technique. Particle size was studied by laser diffraction particle size analyzer. Aerodynamic particle size distribution from inhalers was measured by new generation impactor. Stabilization of all three raw materials was successful. A clear difference between nonstabilized and stabilized raw materials was achieved for drug substance and lactose <10μm. However for lactose <100μm the difference wasn’t as clear as wanted. The surface of the non-stabilized drug substance was more irregular and the particles had more roughness on the surface compared to the stabilized drug substances particles surface. The surface of the stabilized drug particles was more regular and smoother than non-stabilized. Even though a good difference between stabilized and non-stabilized raw materials was achieved, a clear evidence of the effect of the surface properties of the inhalation particles on the quality of the product was not observed. Stabilization of the raw materials didn’t lead to a higher FPD. Possible explanations for the unexpected result might be too rough conditions in the stabilization of the drug substance or smaller than wanted difference in the degree of stabilization of the main component of the product <100μm. Despite positive effects on the quality of the product were not seen there appears to be some evidence that stabilized drug substance results in smaller particle size of dry powder inhalers.
Resumo:
Nearly one fourth of new medicinal molecules are biopharmaceutical (protein, antibody or nucleic acid derivative) based. However, the administration of these compounds is not always that straightforward due to the fragile nature of aforementioned domains in GI-tract. In addition, these molecules often exhibit poor bioavailability when administered orally. As a result, parenteral administration is commonly preferred. In addition, shelf-life of these molecules in aqueous environments is poor, unless stored in low temperatures. Another approach is to bring these molecules to anhydrous form via lyophilization resulting in enhanced stability during storage. Proteins cannot most commonly be freeze dried by themselves so some kind of excipients are nearly always necessary. Disaccharides are commonly utilized excipients in freeze-dried formulations since they provide a rigid glassy matrix to maintain the native conformation of the protein domain. They also act as "sink"-agents, which basically mean that they can absorb some moisture from the environment and still help to protect the API itself to retain its activity and therefore offer a way to robust formulation. The aim of the present study was to investigate how four amorphous disaccharides (cellobiose, melibiose, sucrose and trehalose) behave when they are brought to different relative humidity levels. At first, solutions of each disaccharide were prepared, filled into scintillation vials and freeze dried. Initial information on how the moisture induced transformations take place, the lyophilized amorphous disaccharide cakes were placed in vacuum desiccators containing different relative humidity levels for defined period, after which selected analyzing methods were utilized to further examine the occurred transformations. Affinity to crystallization, water sorption of the disaccharides, the effect of moisture on glass transition and crystallization temperature were studied. In addition FT-IR microscopy was utilized to map the moisture distribution on a piece of lyophilized cake. Observations made during the experiments backed up the data mentioned in a previous study: melibiose and trehalose were shown to be superior over sucrose and cellobiose what comes to the ability to withstand elevated humidity and temperature, and to avoid crystallization with pharmaceutically relevant moisture contents. The difference was made evident with every utilized analyzing method. In addition, melibiose showed interesting anomalies during DVS runs, which were absent with other amorphous disaccharides. Particularly fascinating was the observation made with polarized light microscope, which revealed a possible small-scale crystallization that cannot be observed with XRPD. As a result, a suggestion can safely be made that a robust formulation is most likely obtained by utilizing either melibiose or trehalose as a stabilizing agent for biopharmaceutical freeze-dried formulations. On the other hand, more experiments should be conducted to obtain more accurate information on why these disaccharides have better tolerance for elevating humidities than others.
Resumo:
The influence of water on the brittle behavior of beta-cristobalite is studied by means of molecular dynamics (MD) simulation With the TTAM potential. Crack extension of mode 1 type is observed as the crack opening is filled LIP With water. The critical stress intensity factor K-lc(MD) is used to characterize the crack extension of MD simulation. The surface energy of SiO2 covered with layers of water is calculated at temperature of 300 K. Based oil the Griffith fracture criterion, the critical stress intensity factor K-lc(Griffith) is calculated, and it is in good agreement with that of MD simulation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Cases of mutual exclusion of two species of organisms in nature are known in large numbers. In the majority, they make different demands on the environ- ment which makes co-occurrence impossible. Less frequent are those cases in which a definite activity of one species prevents the occurrence of the other in the same region. An experiment was carried out n order to establish if Chydorus sphaericus can co-occur with water-snails. It emerged that a substance soluble in water which is given off by snails is responsible for the negative effect on small crustacea.
Resumo:
Sol-gel derived TiO2/SiO2/ormosil hybrid planar waveguides have been deposited on soda-lime glass slides and silicon substrates, films were heat treated at 150 degreesC for 2 h or dried at room temperature. Different amounts of water were added to sols to study their impacts on microstructures and optical properties of films. The samples were characterized by m-line spectroscopy, Fourier transform infrared spectroscopy (FT-IR), UV/VIS/NIR spectrophotometer (UV-vis), atomic force microscopy (AFM), thermal analysis instrument and scattering-detection method. The refractive index was found to have the largest value at the molar ratio H2O/OR = 1 in sol (OR means -OCH3, -OC2H5 and -OC4H9 in the sol), whereas the thickest film appears at H2O/OR = 1/2. The rms surface roughness of all the films is lower than 1.1 nm, and increases with the increase of water content in sol. Higher water content leads to higher attenuation of film. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This is the Effect of water quality on coarse fish productivity and movement in the Lower River Irwell and Upper Manchester Ship Canal: a watercourse recovering from historical pollution report produced by the Environment Agency in 2003. The aim of this study was to investigate the impact of water quality upon coarse fish population dynamics in a lowland, urban watercourse. All of the research carried was undertaken in the lower River Irwell and upper Manchester Ship Canal, between February 1998 and December 2001. Of particular interest was the natural sustainability of the urban fishery given recent concern raised in the angling community over an apparent decline in coarse fish populations in lowland rivers. The research described in this report has concentrated upon the role of water quality in determining coarse fish population dynamics, and in particular: The impact of water quality upon fish growth and productivity; The impact of poor water quality and low dissolved oxygen concentrations upon fish distribution and movement; The impact of water quality upon the sexual development of fish.
Resumo:
In the current study, the effects of polar solvents on tissue volume and mechanical properties are considered. Area shrinkage measurements are conducted for mineralized bone tissue samples soaked in polar solvents. Area shrinkage is used to calculate approximate linear and volume shrinkage. Results are compared with viscoelastic mechanical parameters for bone in the same solvents (as measured previously) and with both shrinkage measurements and mechanical data for nonmineralized tissues, as taken from the existing literature. As expected, the shrinkage of mineralized tissues is minimal when compared with shrinkage of nonmineralized tissues immersed in the same polar solvents. The mechanical changes in bone are also substantially less than in nonmineralized tissues. The largest stiffness values are found in shrunken bone samples (immersed in acetone and ethanol). The mineral phase in bone thus resists tissue shrinkage that would otherwise occur in the pure soft tissue phase. © 2007 Materials Research Society.