999 resultados para Effect of hysteresis of habitus
Resumo:
With the use of the quartz fiber spring balance, sorptions and desorptions of water on silica gel at 30°C were studied and the permanent and reproducible hysteresis loop was obtained. At different points on the desorption curve forming the loop, the gel was subjected to high tension glow electric discharge. As a result of the electric discharge, the gel at any point on the desorption curve shifts to a corresponding point on the sorption curve. This is due to the release from the cavities of gel of the entrapped water held in a metastable state. The electric discharge has no effect on the gel at different points on portions of the desorption curve which coincide with the sorption curve and also on the sorption curve itself, indicating the absence of entrapped water in the gel in these regions. The results afford direct experimental evidence of the reality of the cavity theory of sorption-desorption hysteresis.
Resumo:
Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode.
Resumo:
An experimental investigation into the ambient temperature, load-controlled tension�tension fatigue behavior of a martensitic Nitinol shape memory alloy (SMA) was conducted. Fatigue life for several stress levels spanning the critical stress for detwinning was determined and compared with that obtained on an alloy similar in composition but in the austenitic state at room temperature. Results show that the fatigue life of the pseudo-plastic alloy is superior to superelastic shape memory alloy. The stress�strain hysteretic response, monitored throughout the fatigue loading, reveals progressive strain accumulation with the cyclic loading. In addition, the area of hysteresis and recoverable and frictional energies were found to decrease with increasing number of fatigue cycles. Post-mortem characterization of the fatigued specimens through calorimetry and fractography was conducted in order to get further insight into the fatigue micromechanisms. These results are discussed in terms of reversible and irreversible microstructural changes that take place during cyclic loading. Aspects associated with self-heating of martensitic alloy undergoing high frequency stress cycling are discussed.
Resumo:
Li-doped ZnO thin films (Zn1-xLixO, x=0.05-0.15) were grown by pulsed-laser ablation technique. Highly c-axis-oriented films were obtained at a growth temperature of 500 degrees C. Ferroelectricity in Zn1-xLixO was found from the temperature-dependent dielectric constant and from the polarization hysteresis loop. The transition temperature (T-c) varied from 290 to 330 K as the Li concentration increased from 0.05 to 0.15. It was found that the maximum value of the dielectric constant at T-c is a function of Li concentration. A symmetric increase in memory window with the applied gate voltage is observed for the ferroelectric thin films on a p-type Si substrate. A ferroelectric P-E hysteresis loop was observed for all the compositions. The spontaneous polarization (P-s) and coercive field (E-c) of 0.6 mu C/cm(2) and 45 kV/cm were obtained for Zn0.85Li0.15O thin films. These observations reveal that partial replacement of host Zn by Li ions induces a ferroelectric phase in the wurtzite-ZnO semiconductor. The dc transport studies revealed an Ohmic behavior in the lower-voltage region and space-charge-limited conduction prevailed at higher voltages. The optical constants were evaluated from the transmission spectrum and it was found that Li substitution in ZnO enhances the dielectric constant.
Resumo:
Antiferroelectricity of sol-gel grown pure and La modified PbZrO3 thin films, with a maximum extent of 6 mol%, has been characterized by temperature dependent P-E hysteresis loops within the applied electric field of 60 MV/m. It has been seen that on extent of La modification electric field induced phase transformation can be altered and at 40 degrees C its maximum value has been observed at +/- 38 MV/m on 6 mol% modifications whereas the minimum value is +/- 22 MV/m on 1 mol%. On La modification the variation of electric field induced phase transformations at 40 degrees C has been correlated with the temperature of ntiferroelectric phase condensation on cooling. The critical electric fields for saturated P-E hysteresis loops have been defined from field dependent maximum polarizations and their variations on La modification show a similar trend as found in their dielectric phase transition temperatures. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.
Resumo:
Substantial amount of fixed charge present in most of the alternative gate dielectrics gives rise to large shifts in the flat-band voltage (VFB) and charge trapping and de-trapping causes hysterectic changes on voltage cycling. Both phenomena affect stable and reliable transistor operation. In this paper we have studied for the first time the effect of post-metallization hydrogen annealing on the C-V curve of MOS capacitors employing zirconia, one of the most promising gate dielectric. Samples were annealed in hydrogen ambient for up to 30 minutes at different temperatures ranging from room temperature to 400°C. C-V measurements were done after annealing at each temperature and the hysteresis width was calculated from the C-V curves. A minimum hysteresis width of ∼35 mV was observed on annealing the sample at 200°C confirming the excellent suitability of this dielectric
Resumo:
Boron oxide (B2O3) addition to pre-reacted K0.5Na0.5NbO3 (KNN) powders facilitated swift densification at relatively low sintering temperatures which was believed to be a key to minimize potassium and sodium loss. The base KNN powder was synthesized via solid-state reaction route. The different amounts (0.1-1 wt%) of B2O3 were-added, and ceramics were sintered at different temperatures and durations to optimize the amount of B2O3 needed to obtain KNN pellets with highest possible density and grain size. The 0.1 wt% B2O3-added KNN ceramics sintered at 1,100 A degrees C for 1 h exhibited higher density (97 %). Scanning electron microscopy studies confirmed an increase in average grain size with increasing B2O3 content at appropriate temperature of sintering and duration. The B2O3-added KNN ceramics exhibited improved dielectric and piezoelectric properties at room temperature. For instance, 0.1 wt% B2O3-added KNN ceramic exhibited d (33) value of 116 pC/N which is much higher than that of pure KNN ceramics. Interestingly, all the B2O3-added (0.1-1 wt%) KNN ceramics exhibited polarization-electric field (P vs. E) hysteresis loops at room temperature. The remnant polarization (P (r)) and coercive field (E (c)) values are dependent on the B2O3 content and crystallite size.
Resumo:
Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO2 has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO2. Hence the role of substitution doping in stabilizing the competing phases of VO2 in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO2. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO2 can be tuned by substitutional doping of VO2 with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO2 and W- doped VO2 as thin films. XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VO2 thin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size similar to 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO2, the transition temperature has reduced from 68 degrees C to 25 degrees C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration. (c) 2016 Author(s).
Resumo:
© 2014 AIP Publishing LLC. Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2and pure Fe2O3particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.
Resumo:
Optical signals measured in apertureless scanning near field optical microscopy (ASNOM) under ambient conditions are found to be affected significantly by the thin water layer absorbed on the surface under investigation, the presence of which is detected through measurements of the shear force experienced by the tip. This water layer also results in a large hysteresis between optical signals measured during approach and withdrawal of the tip to the sample surface. The role of this effect in ASNOM is anticipated to be significant, with the possibility of resultant topographically induced artefacts for ASNOM involving intermittent contact of tip and sample, but also providing a potential mechanism for nanoscale optical resolution.
Resumo:
Superparamagnetic nanocomposites based on g-Fe2O3 and sulphonated polystyrene have been synthesized by ion exchange process and the preparation conditions were optimized. Samples were subjected to cycling to study the effect of cycling on the magnetic properties of these composites. The structural and magnetization studies have been carried out. Magnetization studies show the dependence of magnetization on the number of ion exchange cycles. Doping of cobalt at the range in to the g-Fe2O3 lattice was effected in situ and the doping was varied in the atomic percentage range 1–10. The exact amount of cobalt dopant as well as the iron content was estimated by Atomic Absorption Spectroscopy. The effect of cobalt in modifying the properties of the composites was then studied and the results indicate that the coercivity can be tuned by the amount of cobalt in the composites. The tuning of both the magnetization and the coercivity can be achieved by a combination of cycling of ion exchange and the incorporation of cobalt
Resumo:
Mixed ferrites belonging to the type Mn0.9Zn0.1Fe2O4 have been prepared by the double sintering method and by the chemical co-precipitation for comparing their magnetic properties. Sintered and precipitated ferrites exhibit different characteristics, especially in their magnetic properties like magnetization (Ms), coercive field (Hc) and Curie temperature (Tc). The sintered particles were size reduced in order to compare with the nanosized co-precipitated particles. The effect of grinding has also been studied. Particles have been collected at regular intervals of grinding and their properties have been studied. The increase in the coercive field has been recorded by a hysteresis curve tracer confirming size reduction. X-ray diffraction studies confirmed the structure and consequent size reduction