993 resultados para Eeg-alpha
Resumo:
Cognitive task performance differs considerably between individuals. Besides cognitive capacities, attention might be a source of such differences. The individual's EEG alpha frequency (IAF) is a putative marker of the subject's state of arousal and attention, and was found to be associated with task performance and cognitive capacities. However, little is known about the metabolic substrate (i.e. the network) underlying IAF. Here we aimed to identify this network. Correlation of IAF with regional Cerebral Blood Flow (rCBF) in fifteen young healthy subjects revealed a network of brain areas that are associated with the modulation of attention and preparedness for external input, which are relevant for task execution. We hypothesize that subjects with higher IAF have pre-activated task-relevant networks and thus are both more efficient in the task-execution, and show a reduced fMRI-BOLD response to the stimulus, not because the absolute amount of activation is smaller, but because the additional activation by processing of external input is limited due to the higher baseline.
Resumo:
Phase locking or synchronization of brain areas is a key concept of information processing in the brain. Synchronous oscillations have been observed and investigated extensively in EEG during the past decades. EEG oscillations occur over a wide frequency range. In EEG, a prominent type of oscillations is alpha-band activity, present typically when a subject is awake, but at rest with closed eyes. The spectral power of alpha rhythms has recently been investigated in simultaneous EEG/fMRI recordings, establishing a wide-range cortico-thalamic network. However, spectral power and synchronization are different measures and little is known about the correlations between BOLD effects and EEG synchronization. Interestingly, the fMRI BOLD signal also displays synchronous oscillations across different brain regions. These oscillations delineate so-called resting state networks (RSNs) that resemble the correlation patterns of simultaneous EEG/fMRI recordings. However, the nature of these BOLD oscillations and their relations to EEG activity is still poorly understood. One hypothesis is that the subunits constituting a specific RSN may be coordinated by different EEG rhythms. In this study we report on evidence for this hypothesis. The BOLD correlates of global EEG synchronization (GFS) in the alpha frequency band are located in brain areas involved in specific RSNs, e.g. the 'default mode network'. Furthermore, our results confirm the hypothesis that specific RSNs are organized by long-range synchronization at least in the alpha frequency band. Finally, we could localize specific areas where the GFS BOLD correlates and the associated RSN overlap. Thus, we claim that not only the spectral dynamics of EEG are important, but also their spatio-temporal organization.
Resumo:
Neural correlates of electroencephalographic (EEG) alpha rhythm are poorly understood. Here, we related EEG alpha rhythm in awake humans to blood-oxygen-level-dependent (BOLD) signal change determined by functional magnetic resonance imaging (fMRI). Topographical EEG was recorded simultaneously with fMRI during an open versus closed eyes and an auditory stimulation versus silence condition. EEG was separated into spatial components of maximal temporal independence using independent component analysis. Alpha component amplitudes and stimulus conditions served as general linear model regressors of the fMRI signal time course. In both paradigms, EEG alpha component amplitudes were associated with BOLD signal decreases in occipital areas, but not in thalamus, when a standard BOLD response curve (maximum effect at approximately 6 s) was assumed. The part of the alpha regressor independent of the protocol condition, however, revealed significant positive thalamic and mesencephalic correlations with a mean time delay of approximately 2.5 s between EEG and BOLD signals. The inverse relationship between EEG alpha amplitude and BOLD signals in primary and secondary visual areas suggests that widespread thalamocortical synchronization is associated with decreased brain metabolism. While the temporal relationship of this association is consistent with metabolic changes occurring simultaneously with changes in the alpha rhythm, sites in the medial thalamus and in the anterior midbrain were found to correlate with short time lag. Assuming a canonical hemodynamic response function, this finding is indicative of activity preceding the actual EEG change by some seconds.
Resumo:
Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness (SW) metrics, respectively. Yet the number of PNES attacks per month correlated with a weakness of local connectedness and a skewed balance between local and global connectedness quantified with SW, all in EEG alpha band. In beta band, patients demonstrated above-normal resiliency, measured with assortativity coefficient, which also correlated with the frequency of PNES attacks. This interictal EEG phenotype may help improve differentiation between PNES and epilepsy. The results also suggest that local connectivity could be a target for therapeutic interventions in PNES. Selective modulation (strengthening) of local connectivity might improve the skewed balance between local and global connectivity and so prevent PNES events.
Resumo:
Most previous neurophysiological studies evoked emotions by presenting visual stimuli. Models of the emotion circuits in the brain have for the most part ignored emotions arising from musical stimuli. To our knowledge, this is the first emotion brain study which examined the influence of visual and musical stimuli on brain processing. Highly arousing pictures of the International Affective Picture System and classical musical excerpts were chosen to evoke the three basic emotions of happiness, sadness and fear. The emotional stimuli modalities were presented for 70 s either alone or combined (congruent) in a counterbalanced and random order. Electroencephalogram (EEG) Alpha-Power-Density, which is inversely related to neural electrical activity, in 30 scalp electrodes from 24 right-handed healthy female subjects, was recorded. In addition, heart rate (HR), skin conductance responses (SCR), respiration, temperature and psychometrical ratings were collected. Results showed that the experienced quality of the presented emotions was most accurate in the combined conditions, intermediate in the picture conditions and lowest in the sound conditions. Furthermore, both the psychometrical ratings and the physiological involvement measurements (SCR, HR, Respiration) were significantly increased in the combined and sound conditions compared to the picture conditions. Finally, repeated measures ANOVA revealed the largest Alpha-Power-Density for the sound conditions, intermediate for the picture conditions, and lowest for the combined conditions, indicating the strongest activation in the combined conditions in a distributed emotion and arousal network comprising frontal, temporal, parietal and occipital neural structures. Summing up, these findings demonstrate that music can markedly enhance the emotional experience evoked by affective pictures.
Resumo:
The brain is a complex neural network with a hierarchical organization and the mapping of its elements and connections is an important step towards the understanding of its function. Recent developments in diffusion-weighted imaging have provided the opportunity to reconstruct the whole-brain structural network in-vivo at a large scale level and to study the brain structural substrate in a framework that is close to the current understanding of brain function. However, methods to construct the connectome are still under development and they should be carefully evaluated. To this end, the first two studies included in my thesis aimed at improving the analytical tools specific to the methodology of brain structural networks. The first of these papers assessed the repeatability of the most common global and local network metrics used in literature to characterize the connectome, while in the second paper the validity of further metrics based on the concept of communicability was evaluated. Communicability is a broader measure of connectivity which accounts also for parallel and indirect connections. These additional paths may be important for reorganizational mechanisms in the presence of lesions as well as to enhance integration in the network. These studies showed good to excellent repeatability of global network metrics when the same methodological pipeline was applied, but more variability was detected when considering local network metrics or when using different thresholding strategies. In addition, communicability metrics have been found to add some insight into the integration properties of the network by detecting subsets of nodes that were highly interconnected or vulnerable to lesions. The other two studies used methods based on diffusion-weighted imaging to obtain knowledge concerning the relationship between functional and structural connectivity and about the etiology of schizophrenia. The third study integrated functional oscillations measured using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) as well as diffusion-weighted imaging data. The multimodal approach that was applied revealed a positive relationship between individual fluctuations of the EEG alpha-frequency and diffusion properties of specific connections of two resting-state networks. Finally, in the fourth study diffusion-weighted imaging was used to probe for a relationship between the underlying white matter tissue structure and season of birth in schizophrenia patients. The results are in line with the neurodevelopmental hypothesis of early pathological mechanisms as the origin of schizophrenia. The different analytical approaches selected in these studies also provide arguments for discussion of the current limitations in the analysis of brain structural networks. To sum up, the first studies presented in this thesis illustrated the potential of brain structural network analysis to provide useful information on features of brain functional segregation and integration using reliable network metrics. In the other two studies alternative approaches were presented. The common discussion of the four studies enabled us to highlight the benefits and possibilities for the analysis of the connectome as well as some current limitations.
Resumo:
In relaxed wakefulness, the EEG exhibits robust rhythms in the alpha band (8-13 Hz), which decelerate to theta (approximately 2-7 Hz) frequencies during early sleep. In animal models, these rhythms occur coherently with synchronized activity in the thalamus. However, the mechanisms of this thalamic activity are unknown. Here we show that, in slices of the lateral geniculate nucleus maintained in vitro, activation of the metabotropic glutamate receptor (mGluR) mGluR1a induces synchronized oscillations at alpha and theta frequencies that share similarities with thalamic alpha and theta rhythms recorded in vivo. These in vitro oscillations are driven by an unusual form of burst firing that is present in a subset of thalamocortical neurons and are synchronized by gap junctions. We propose that mGluR1a-induced oscillations are a potential mechanism whereby the thalamus promotes EEG alpha and theta rhythms in the intact brain.
Resumo:
Dysfunctions of the hippocampus have been suggested to be related to schizophrenia, and reduced connectivity with other brain regions may be a key for the pathophysiology. The aim of this study was to investigate the effect of white matter anomalies in the hippocampus, as a sign of altered connectivity, on the brain electrical activity. We investigated seven first episode schizophrenic patients and seven age, gender and education-matched controls with diffusion tensor imaging and resting EEG. Fractional anisotropy was computed based on diffusion tensor imaging data for the right and left hippocampus for both groups. No group differences were found in hippocampal fractional anisotropy, EEG spectral power and topography. However a significant correlation was found between more anterior alpha activity and lower fractional anisotropy of both hippocampi in schizophrenics, but not in controls. More anterior alpha activity has been described in schizophrenia. We conclude that this feature might depict a group of schizophrenic patients with reduced hippocampal connectivity.
Resumo:
Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
Resumo:
The literature contains many examples of digital procedures for the analytical treatment of electroencephalograms, but there is as yet no standard by which those techniques may be judged or compared. This paper proposes one method of generating an EEG, based on a computer program for Zetterberg's simulation. It is assumed that the statistical properties of an EEG may be represented by stationary processes having rational transfer functions and achieved by a system of software fillers and random number generators.The model represents neither the neurological mechanism response for generating the EEG, nor any particular type of EEG record; transient phenomena such as spikes, sharp waves and alpha bursts also are excluded. The basis of the program is a valid ‘partial’ statistical description of the EEG; that description is then used to produce a digital representation of a signal which if plotted sequentially, might or might not by chance resemble an EEG, that is unimportant. What is important is that the statistical properties of the series remain those of a real EEG; it is in this sense that the output is a simulation of the EEG. There is considerable flexibility in the form of the output, i.e. its alpha, beta and delta content, which may be selected by the user, the same selected parameters always producing the same statistical output. The filtered outputs from the random number sequences may be scaled to provide realistic power distributions in the accepted EEG frequency bands and then summed to create a digital output signal, the ‘stationary EEG’. It is suggested that the simulator might act as a test input to digital analytical techniques for the EEG, a simulator which would enable at least a substantial part of those techniques to be compared and assessed in an objective manner. The equations necessary to implement the model are given. The program has been run on a DEC1090 computer but is suitable for any microcomputer having more than 32 kBytes of memory; the execution time required to generate a 25 s simulated EEG is in the region of 15 s.
Resumo:
This paper describes a novel mimetic technique of using frequency domain approach and digital filters for automatic generation of EEG reports. Digitized EEG data files, transported on a cartridge, have been used for the analysis. The signals are filtered for alpha, beta, theta and delta bands with digital bandpass filters of fourth-order, cascaded, Butterworth, infinite impulse response (IIR) type. The maximum amplitude, mean frequency, continuity index and degree of asymmetry have been computed for a given EEG frequency band. Finally, searches for the presence of artifacts (eye movement or muscle artifacts) in the EEG records have been made.
Resumo:
Cognitive and neurophysiological correlates of arithmetic calculation, concepts, and applications were examined in 41 adolescents, ages 12-15 years. Psychological and task-related EEG measures which correctly distinguished children who scored low vs. high (using a median split) in each arithmetic subarea were interpreted as indicative of processes involved. Calculation was related to visual-motor sequencing, spatial visualization, theta activity measured during visual-perceptual and verbal tasks at right- and left-hemisphere locations, and right-hemisphere alpha activity measured during a verbal task. Performance on arithmetic word problems was related to spatial visualization and perception, vocabulary, and right-hemisphere alpha activity measured during a verbal task. Results suggest a complex interplay of spatial and sequential operations in arithmetic performance, consistent with processing model concepts of lateralized brain function.
Resumo:
The present study has both theoretical and practical aspects. The theoretical intent of the study was to closely examine the relationship between muscle activity (EMG) and EEG state during the process of falling asleep. Sleep stages during sleep onset (SO) have been generally defined with regards to brain wave activity (Recht schaff en & Kales (1968); and more precisely by Hori, Hayashi, & Morikawa (1994)). However, no previous study has attempted to quantify the changes in muscle activity during this same process. The practical aspect of the study examined the reliability ofa commercially developed wrist-worn alerting device (NovAlert™) that utilizes changes in muscle activity/tension in order to alert its user in the event that he/she experiences reduced wakefulness that may result in dangerous consequences. Twelve female participants (aged 18-42) sp-ent three consecutive nights in the sleep lab ("Adaptation", "EMG", and "NOVA" nights). Each night participants were given 5, twenty-minute nap opportunities. On the EMG night, participants were allowed to fall asleep freely. On the NOV A night, participants wore the Nov Alert™ wrist device that administered a Psychomotor Vigilance Test (PVT) when it detected that muscle activity levels had dropped below baseline. Nap sessions were scored using Hori's 9-stage scoring system (Hori et aI, 1994). Power spectral analyses (FFT) were also performed. Effects ofthe PVT administration on EMG and EEG frequencies were also examined. Both chin and wrist EMG activity showed reliable and significant decline during the early stages ofHori staging (stages HO to H3 characterized by decreases in alpha activity). All frequency bands studied went through significant changes as the participants progressed through each ofHori's 9 SO stages. Delta, theta, and sigma activity increased later in the SO continuum while a clear alpha dominance shift was noted as alpha activity shifted from the posterior regions of the brain (during Hori stages HO to H3) to the anterior portions (during Hori stages H7 to H9). Administration of the PVT produced significant increases in EMG activity and was effective in reversing subjective drowsiness experienced during the later stages of sleep onset. Limitations of the alerting effects of the PVTs were evident following 60 to 75 minutes of use in that PVTs delivered afterwards were no longer able to significantly increase EMG levels. The present study provides a clearer picture of the changes in EMG and EEG during the sleep onset period while testing the efficacy of a commercially developed alerting device. EMG decreases were found to begin during Hori stage 0 when EEG was - dominated by alpha wave activity and were maximal as Hori stages 2 to 5 were traversed (coincident with alpha and beta activity). This signifies that EMG decrements and the loss of resting alpha activity are closely related. Since decreased alpha has long been associated with drowsiness and impending sleep, this investigation links drops in muscle tone with sleepiness more directly than in previous investigations. The EMG changes were reliably demonstrated across participants and the NovAlert™ detected the EMG decrements when Hori stage 3 was entered. The alerting vibrations produced by the NovAlert™ occurred early enough in the SO process to be of practical importance as a sleepiness monitoring and alerting device.
Resumo:
This study explored changes in scalp electrophysiology across two Working Memory (WM) tasks and two age groups. Continuous electroencephalography (EEG) was recorded from 18 healthy adults (18-34 years) and 12 healthy adolescents (14-17) during the performance of two Oculomotor Delayed Response (ODR) WM tasks; (i.e. eye movements were the metric of motor response). Delay-period, EEG data in the alpha frequency was sampled from anterior and parietal scalp sites to achieve a general measure of frontal and parietal activity, respectively. Frontal-parietal, alpha coherence was calculated for each participant for each ODR-WM task. Coherence significantly decreased in adults moving across the two ODR tasks, whereas, coherence significantly increased in adolescents moving across the two ODR tasks. The effects of task in the adolescent and adult groups were large and medium, respectively. Within the limits of this study, the results provide empirical support that WM development during adolescence include complex, qualitative, change.