998 resultados para Eeg driving


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state networks (RSNs). Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates) and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN) and left-working-memory network (LWMN). METHODS: Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11) and matched healthy controls (n = 11) using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps. RESULTS: The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls. CONCLUSIONS: By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling. SIGNIFICANCE: The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations), arise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les émotions jouent un rôle important dans la prise de décision quotidienne. En effet, elles influencent grandement la manière dont les individus interagissent avec leur environnement. Dans cette étude nous avons premièrement conçu un environnement virtuel de conduite automobile, puis créé des scénarios générateurs d’émotions à l’aide de la méthode Belief-Desire-Intention. Nous avons évalué l’efficacité de ces scénarios à l’aide d’un groupe de 30 personnes et d’un casque électroencéphalogramme pour mesurer leurs émotions. On observe que plus de 70% des scénarios conçus avec cette méthode ont généré l’émotion que l’on avait anticipée chez 52% à 76% des participants. La deuxième phase de cette expérience porte sur la réduction d’émotions avec un agent correcteur. Nous avons noté une efficacité de la réduction des émotions allant de 36.4% jusqu’à 70.0% des participants à travers les différents scénarios.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of interictal epileptic activity (IEA) on driving is a rarely investigated issue. We analyzed the impact of IEA on reaction time in a pilot study. Reactions to simple visual stimuli (light flash) in the Flash test or complex visual stimuli (obstacle on a road) in a modified car driving computer game, the Steer Clear, were measured during IEA bursts and unremarkable electroencephalography (EEG) periods. Individual epilepsy patients showed slower reaction times (RTs) during generalized IEA compared to RTs during unremarkable EEG periods. RT differences were approximately 300 ms (p < 0.001) in the Flash test and approximately 200 ms (p < 0.001) in the Steer Clear. Prior work suggested that RT differences >100 ms may become clinically relevant. This occurred in 40% of patients in the Flash test and in up to 50% in the Steer Clear. When RT were pooled, mean RT differences were 157 ms in the Flash test (p < 0.0001) and 116 ms in the Steer Clear (p < 0.0001). Generalized IEA of short duration seems to impair brain function, that is, the ability to react. The reaction-time EEG could be used routinely to assess driving ability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Auditory verbal hallucinations (AVH) in schizophrenia patients assumingly result from a state inadequate activation of the primary auditory system. We tested brain responsiveness to auditory stimulation in healthy controls (n=26), and in schizophrenia patients that frequently (n=18) or never (n=11) experienced AVH. Responsiveness was assessed by driving the EEG with click-tones at 20, 30 and 40Hz. We compared stimulus induced EEG changes between groups using spectral amplitude maps and a global measure of phase-locking (GFS). As expected, the 40Hz stimulation elicited the strongest changes. However, while controls and non-hallucinators increased 40Hz EEG activity during stimulation, a left-lateralized decrease was observed in the hallucinators. These differences were significant (p=.02). As expected, GFS increased during stimulation in controls (p=.08) and non-hallucinating patients (p=.06), which was significant when combining the two groups (p=.01). In contrast, GFS decreased with stimulation in hallucinating patients (p=0.13), resulting in a significantly different GFS response when comparing subjects with and without AVH (p<.01). Our data suggests that normally, 40Hz stimulation leads to the activation of a synchronized network representing the sensory input, but in hallucinating patients, the same stimulation partly disrupts ongoing activity in this network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drivers' ability to react to unpredictable events deteriorates when exposed to highly predictable and uneventful driving tasks. Highway design reduces the driving task mainly to a lane-keeping manoeuvre. Such a task is monotonous, providing little stimulation and this contributes to crashes due to inattention. Research has shown that driver's hypovigilance can be assessed with EEG measurements and that driving performance is impaired during prolonged monotonous driving tasks. This paper aims to show that two dimensions of monotony - namely road design and road side variability - decrease vigilance and impair driving performance. This is the first study correlating hypovigilance and driver performance in varied monotonous conditions, particularly on a short time scale (a few seconds). We induced vigilance decrement as assessed with an EEG during a monotonous driving simulator experiment. Road monotony was varied through both road design and road side variability. The driver's decrease in vigilance occurred due to both road design and road scenery monotony and almost independently of the driver's sensation seeking level. Such impairment was also correlated to observable measurements from the driver, the car and the environment. During periods of hypovigilance, the driving performance impairment affected lane positioning, time to lane crossing, blink frequency, heart rate variability and non-specific electrodermal response rates. This work lays the foundation for the development of an in-vehicle device preventing hypovigilance crashes on monotonous roads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Sleepiness is a direct contributor to a substantial proportion of fatal and severe road cashes. A number of technological solutions designed to detect sleepiness have been developed, but self-awareness of increasing sleepiness remains a critical component in on-road strategies for mitigating this risk. In order to take appropriate action when sleepy, drivers’ perceptions of their level of sleepiness must be accurate. Aims: This study aimed to assess capacity to accurately identify sleepiness and self-regulate driving cessation during a validated driving simulator task. Participants: Participants comprised 26 young adult drivers (20-28 years). The drivers had open licenses but no other exclusion criteria where used. Methods: Participants woke at 5am, and took part in a laboratory-based hazard perception driving simulation, either at mid-morning or mid-afternoon. Established physiological measures (including EEG) and subjective measures (sleepiness ratings) previously found sensitive to changes in sleepiness levels were utilised. Participants were instructed to ‘drive’ until they believed that sleepiness had impaired their ability to drive safely. They were then offered a nap opportunity. Results: The mean duration of the drive before cessation was 39 minutes (±18 minutes). Almost all (23/26) of the participants then achieved sleep during the nap opportunity. These data suggest that the participants’ perceptions of sleepiness were specific. However, EEG data from a number of participants suggested very high levels of sleepiness prior to driving cessation, suggesting poor sensitivity. Conclusions: Participants reported high levels of sleepiness while driving after very moderate sleep restriction. They were able to identify increasing sleepiness during the test period, could decide to cease driving and in most cases were sufficiently sleepy to achieve sleep during the daytime session. However, the levels of sleepiness achieved prior to driving cessation suggest poor accuracy in self-perception and regulation. This presents practical issues for the implementation of fatigue and sleep-related strategies to improve driver safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives To examine the effects on monotonous driving of normal sleep versus one night of sleep restriction in continuous positive airway pressure (CPAP) treated obstructive sleep apnoea (OSA) patients compared with age matched healthy controls. Methods Nineteen CPAP treated compliant male OSA patients (OSA-treated patients (OPs)), aged 50–75 years, and 20 healthy age-matched controls underwent both a normal night’s sleep and sleep restriction to 5 h (OPs remained on CPAP) in a counterbalanced design. All participants completed a 2 h afternoon monotonous drive in a realistic car simulator. Driving was monitored for sleepiness-related minor and major lane deviations, with ‘safe’ driving time being total time driven prior to first major lane deviation. EEGs were recorded continuously, and subjective sleepiness ratings were taken at regular intervals throughout the drive. Results After a normal night’s sleep, OPs and controls did not differ in terms of driving performance or in their ability to assess the levels of their own sleepiness, with both groups driving ‘safely’ for approximately 90 min. However, after sleep restriction, OPs had a significantly shorter (65 min) safe driving time and had to apply more compensatory effort to maintain their alertness compared with controls. They also underestimated the enhanced sleepiness. Nevertheless, apart from this caveat, there were generally close associations between subjective sleepiness, likelihood of a major lane deviation and EEG changes indicative of sleepiness. Conclusions With a normal night’s sleep, effectively treated older men with OSA drive as safely as healthy men of the same age. However, after restricted sleep, driving impairment is worse than that of controls. This suggests that, although successful CPAP treatment can alleviate potential detrimental effects of OSA on monotonous driving following normal sleep, these patients remain more vulnerable to sleep restriction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Obstructive sleep apnoea (OSA) patients effectively treated by and compliant with continuous positive air pressure (CPAP) occasionally miss a night’s treatment. The purpose of this study was to use a real car interactive driving simulator to assess the effects of such an occurrence on the next day’s driving, including the extent to which these drivers are aware of increased sleepiness. Methods Eleven long-term compliant CPAP-treated 50–75-year-old male OSA participants completed a 2-h afternoon, simulated, realistic monotonous drive in an instrumented car, twice, following one night: (1) normal sleep with CPAP and (2) nil CPAP. Drifting out of road lane (‘incidents’), subjective sleepiness every 200 s and continuous electroencephalogram (EEG) activities indicative of sleepiness and compensatory effort were monitored. Results Withdrawal of CPAP markedly increased sleep disturbance and led to significantly more incidents, a shorter ‘safe’ driving duration, increased alpha and theta EEG power and greater subjective sleepiness. However, increased EEG beta activity indicated that more compensatory effort was being applied. Importantly, under both conditions, there was a highly significant correlation between subjective and EEG measures of sleepiness, to the extent that participants were well aware of the effects of nil CPAP. Conclusions Patients should be aware that compliance with treatment every night is crucial for safe driving.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Sleep restriction and missing 1 night’s continuous positive air pressure (CPAP) treatment are scenarios faced by obstructive sleep apnoea (OSA) patients, who must then assess their own fitness to drive. This study aims to assess the impact of this on driving performance. Method 11 CPAP treated participants (50–75 yrs), drove an interactive car simulator under monotonous motorway conditions for 2 hours on 3 afternoons, following;(i)normal night’s sleep (average 8.2 h) with CPAP (ii) sleep restriction (5 h), with CPAP (iii)normal length of sleep, without CPAP. Driving incidents were noted if the car came out of the designated driving lane. EEG was recorded continually and KSS reported every 200 seconds. Results Driving incidents: Incidents were more prevalent following CPAP withdrawal during hour 1, demonstrating a significant condition time interaction [F(6,60) = 3.40, p = 0.006]. KSS: At the start of driving participants felt sleepiest following CPAP withdrawal, by the end of the task KSS levels were similar following CPAP withdrawal and sleep restriction, demonstrating a significant condition, time interaction [F(3.94,39.41) = 3.39, p = 0.018]. EEG: There was a non significant trend for combined alpha and theta activity to be highest throughout the drive following CPAP withdrawal. Discussion CPAP withdrawal impairs driving simulator performance sooner than restricting sleep to 5 h with CPAP. Participants had insight into this increased sleepiness reflected by the higher KSS reported following CPAP withdrawal. In the practical terms of driving any one incident could be fatal. The earlier impairment reported here demonstrates the potential danger of missing CPAP treatment and highlights the benefit of CPAP treatment even when sleep time is short.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Sociedade Europeia de Pesquisa do Sono realizou muito recentemente um estudo, onde mostrou que a prevalência média de adormecimento ao volante nos últimos 2 anos foi de 17%. Além disto, tem sido provado por todo o mundo que a sonolência durante a condução é uma das principais causas de acidentes de trânsito. Torna-se assim conveniente, o desenvolvimento de sistemas que analisem a suscetibilidade de um determinado condutor para adormecer no trânsito, bem como de ferramentas que monitorem em tempo real o estado físico e mental do condutor, para alertarem nos momentos críticos. Apesar do estudo do sono se ter iniciado há vários anos, a maioria das investigações focaram-se no ciclo normal do sono, estudando os indivíduos de forma relaxada e de olhos fechados. Só mais recentemente, têm surgido os estudos que se focam nas situações de sonolência em atividade, como _e o caso da condução. Uma grande parte Dos estudos da sonolência em condução têm utilizado a eletroencefalografia (EEG), de forma a perceber se existem alterações nas diferentes bandas de frequência desta, que possam indicar o estado de sonolência do condutor. Além disso, a evolução da sonolência a partir de alterações no piscar dos olhos (que podem ser vistas nos sinais EEG) também tem sido alvo de grande pesquisa, tendo vindo a revelar resultados bastante promissores. Neste contexto e em parceria com a empresa HealthyRoad, esta tese está integrada no projeto HealthyDrive, que visa o desenvolvimento de um sistema de alerta e deteção de sinais de fadiga e sonolência nos condutores de veículos automóveis. A contribuição desta tese no projeto prendeu-se com o estudo da sonolência dos indivíduos em condução a partir de sinais EEG, para desta forma investigar possíveis indicadores dos diferentes níveis desta que possam ser utilizados pela empresa no projeto. Foram recolhidos e analisados 17 sinais EEG de indivíduos em simulação de condução. Além disso foram desenvolvidos dois métodos de análise destes sinais: O primeiro para a deteção e análise dos piscar de olhos a partir de EEG, o segundo para análise do espetro de potência. Ambos os métodos foram utilizados para analisar os sinais recolhidos e investigar que tipo de relação existe entre a sonolência do condutor e as alterações nos piscares dos olhos, bem como as alterações do espetro do EEG. Os resultados mostraram uma correlação entre a duração do piscar de olhos e a sonolência do condutor. Com o aumento da sonolência velicou-se um aumento da duração do piscar, desencadeado principalmente pelo aumento na duração de fecho, que chegou aos 51.2%. Em relação ao espectro de potência, os resultados sugerem que a potência relativa de todas as bandas analisadas fornecem informações relevantes sobre a sonolência do condutor. Além disso, o parâmetro (_+_)/_ demostrou estar relacionado com variações da sonolência, diminuindo com o seu avanço e aumentando significativamente (111%) no instante em que os condutores adormeceram.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O reconhecimento da intenção do condutor a partir de sinais de eletroencefalografia (EEG) pode ser útil no desenvolvimento de interfaces cérebro computador (BCI) para serem usadas em sinergia com veículos inteligentes. Isso pode ser benéfico para melhorar a qualidade de interação entre o motorista e o carro, por exemplo, fornecendo uma resposta do carro inteligente alinhada com a intenção do motorista. Neste estudo, considera-se a antecipação como sendo o estado cognitivo que leva a ações especificas durante a condução de um automóvel. Portanto, propomos investigar a presença de padrões antecipatórios em sinais EEG durante a condução de veículos para determinar duas ações especifícas (1) virar à esquerda e (2) virar à direita, alguns milissegundos antes que tais ações aconteçam. Um protocolo experimental foi proposto para gravar sinais EEG de 5 indivíduos enquanto eles operam um simulador de realidade virtual não invasiva - que foi projetado para tal experimento - que simula a condução de um carro virtual. O protocolo experimental é uma variante do paradigma da variação negativa contingente (CNV) com condições Go e No-go no sistema de condução de realidade virtual. Os resultados apresentados neste estudo indicam a presença de padrões antecipatórios em potenciais corticais lentos observados no domínio do tempo (medias dos sinais EEG) e da frequência (Power Spectra e coerência de fase). Isso abre um leque de possibilidades no desenvolvimento de sistemas BCI - baseados em sinais antecipatórios - que conectem o motorista ao veiculo inteligente favorecendo uma tomada de decisão que analise as intenções dos condutores podendo eventualmente evitar acidentes durante a condução.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE In patients with epilepsy, seizure relapse and behavioral impairments can be observed despite the absence of interictal epileptiform discharges (IEDs). Therefore, the characterization of pathologic networks when IEDs are not present could have an important clinical value. Using Granger-causal modeling, we investigated whether directed functional connectivity was altered in electroencephalography (EEG) epochs free of IED in left and right temporal lobe epilepsy (LTLE and RTLE) compared to healthy controls. METHODS Twenty LTLE, 20 RTLE, and 20 healthy controls underwent a resting-state high-density EEG recording. Source activity was obtained for 82 regions of interest (ROIs) using an individual head model and a distributed linear inverse solution. Granger-causal modeling was applied to the source signals of all ROIs. The directed functional connectivity results were compared between groups and correlated with clinical parameters (duration of the disease, age of onset, age, and learning and mood impairments). RESULTS We found that: (1) patients had significantly reduced connectivity from regions concordant with the default-mode network; (2) there was a different network pattern in patients versus controls: the strongest connections arose from the ipsilateral hippocampus in patients and from the posterior cingulate cortex in controls; (3) longer disease duration was associated with lower driving from contralateral and ipsilateral mediolimbic regions in RTLE; (4) aging was associated with a lower driving from regions in or close to the piriform cortex only in patients; and (5) outflow from the anterior cingulate cortex was lower in patients with learning deficits or depression compared to patients without impairments and to controls. SIGNIFICANCE Resting-state network reorganization in the absence of IEDs strengthens the view of chronic and progressive network changes in TLE. These resting-state connectivity alterations could constitute an important biomarker of TLE, and hold promise for using EEG recordings without IEDs for diagnosis or prognosis of this disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drowsy driving impairs motorists’ ability to operate vehicles safely, endangering both the drivers and other people on the road. The purpose of the project is to find the most effective wearable device to detect drowsiness. Existing research has demonstrated several options for drowsiness detection, such as electroencephalogram (EEG) brain wave measurement, eye tracking, head motions, and lane deviations. However, there are no detailed trade-off analyses for the cost, accuracy, detection time, and ergonomics of these methods. We chose to use two different EEG headsets: NeuroSky Mindwave Mobile (single-electrode) and Emotiv EPOC (14- electrode). We also tested a camera and gyroscope-accelerometer device. We can successfully determine drowsiness after five minutes of training using both single and multi-electrode EEGs. Devices were evaluated using the following criteria: time needed to achieve accurate reading, accuracy of prediction, rate of false positives vs. false negatives, and ergonomics and portability. This research will help improve detection devices, and reduce the number of future accidents due to drowsy driving.