858 resultados para Education Science
Resumo:
Mode of access: Internet.
Resumo:
Subtitle varies.
Resumo:
Communicating science can be challenging at any educational level. We used informal and experiential learning to engage groups of potential University applicants in one project that involved staging a play in one of the teaching laboratories at the University of Worcester whilst a second project designed a play in house and took this to schools. In the first project the plot centred on stem cell research. School pupils and students from FE Colleges were offered complementary sessions including a lecture exploring the science behind stem cell research, a discussion on ethical aspects involved and a practical using university facilities. We ascertained attitudes to Higher Education in the students participating before and after the event. We found an enhanced view of the science and a highly significant change in attitude to attending University for students taking vocational subjects at FE level. The second project was aimed at exploring attitudes to ethics and animal welfare among a cohort of 15 – 18 year olds. Students engaged with the issues in the drama to a high degree. Our conclusions are that drama is an excellent way to inform potential students about higher education and HE level science in particular. Additionally we demonstrated the importance of events taking place at HE institutions in order to maximise change in attitudes to HE.
Resumo:
Research in science education is now an international activity. This book asks for the first time, Does this research activity have an identity?-It uses the significant studies of more than 75 researchers in 15 countries to see to what extent they provide evidence for an identity as a distinctive field of research.-It considers trends in the research over time, and looks particularly at what progression in the research entails.-It provides insight into how researchers influence each other and how involvement in research affects the being of the researcher as a person.-It addresses the relation between research and practice in a manner that sees teaching and learning in the science classroom as interdependent with national policies and curriculum traditions about science. It gives graduate students and other early researchers an unusual overview of their research area as a whole. Established researchers will be interested in, and challenged by, the identity the author ascribes to the research and by the plea he makes for the science content itself to be seen as problematic.
Resumo:
This chapter will report on a study that sought to develop a systemwide approach to embedding education for sustainability (EfS (the preferred term in Australia) in teacher education. The strategy for a coordinated and coherent systemic approach involved identifying and eliciting the participation of key agents of change within the‘teacher education system’ in one state in Australia, Queensland. This consisted of one representative from each of the eight Queensland universities offering pre-service teacher education, as well as the teacher registration authority, the key State Government agency responsible for public schools, and two national professional organisations. Part of the approach involved teacher educators at different universities developing an institutional specific approach to embedding sustainability education within their teacher preparation programs. Project participants worked collaboratively to facilitate policy and curriculum change while the project leaders used an action research approach to inform and monitor actions taken and to provide guidance for subsequent actions to effect change simultaneously at the state, institutional and course levels. In addition to the state-wide multi-site case study, which we argue has broader applications to national systems in other countries, the chapter will include two institutional level case studies of efforts to embed sustainability in science teacher education.
Resumo:
The SiMERR National Survey was one of the first priorities of the National Centre of Science, Information and Communication Technology and Mathematics Education for Rural and Regional Australia (SiMERR Australia), established at the University of New England in July 2004 through a federal government grant. With university based ‘hubs’ in each state and territory, SiMERR Australia aims to support rural and regional teachers, students and communities in improving educational outcomes in these subject areas. The purpose of the survey was to identify the key issues affecting these outcomes. The National Survey makes six substantial contributions to our understanding of issues in rural education. First, it focuses specifically on school science, ICT and mathematics education, rather than on education more generally. Second, it compares the different circumstances and needs of teachers across a nationally agreed geographical framework, and quantifies these differences. Third, it compares the circumstances and needs of teachers in schools with different proportions of Indigenous students. Fourth, it provides greater detail than previous studies on the specific needs of schools and teachers in these subject areas. Fifth, the analyses of teacher ‘needs’ have been controlled for the socio-economic background of school locations, resulting in findings that are more tightly associated with geographic location than with economic circumstances. Finally, most previous reports on rural education in Australia were based upon focus interviews, public submissions or secondary analyses of available data. In contrast, the National Survey has generated a sizable body of original quantitative and qualitative data.
Building sustainable education in science, mathematics and technology education in Western Australia
Resumo:
This study sought to explore the current state of Grades 4 to 8 science education in Ontario from the perspective of Junior/Intermediate (J/I) teachers. The study’s methodology was a sequential 2-phased mixed methods explanatory design denoted as QUAN (qual) qual. Data were collected from an online survey and follow-up interviews. J/I teachers (N = 219) from 48 school boards in Ontario completed a survey that collected both quantitative and qualitative data. Interviewees were selected from the survey participant population (n = 6) to represent a range of teaching strategies, attitudes toward teaching science, and years of experience. Survey and interview questions inquired about teacher attitudes toward teaching science, academic and professional experiences, teaching strategies, support resources, and instructional time allotments. Quantitative data analyses involved the descriptive statistics and chi-square tests. Qualitative data was coded inductively and deductively. Academic background in science was found to significantly influence teachers’ reported level of capability to teach science. The undergraduate degrees held by J/I science teachers were found to significantly influence their reported levels of capability to teach science. Participants identified a lack of time allocated for science instruction and inadequate equipment and facilities as major limitations on science instruction. Science in schools was reported to be of a “second-tiered” value to language and mathematics. Implications of this study include improving undergraduate and preservice experiences of elementary teachers by supporting their science content knowledge and pedagogical content knowledge.
Resumo:
The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.
Resumo:
Mode of access: Internet.
Resumo:
With his Man's place in nature ... New York, 1904.