35 resultados para Ecotones
Resumo:
[EN] Gradients in the composition and diversity (e.g. number of species) of faunal assemblages are common at ecotones between juxtaposed habitats. Patterns in the number of species, however, can be confounded by patterns in abundance of individuals, because more species tend to be found wherever there are more individuals. We tested whether proximity to reefs influenced patterns in the composition and diversity (‘species density’ = number of species per area and ‘species richness’ = number of species per number of individuals) of prosobranch gastropods in meadows of two seagrasses with different physiognomy: Posidonia and Amphibolis. A change in the species composition was observed from reef-seagrass edges towards the interiors of Amphibolis, but not in Posidonia meadows. Similarly, the abundance of gastropods and species density was higher at edges relative to interiors of Amphibolis meadows, but not in Posidonia meadows. However, species richness was not affected by proximity to reefs in either type of seagrass meadow. The higher number of species at the reef-Amphibolis edge was therefore a consequence of higher abundance, rather than species richness per se. These results suggest that patterns in the composition and diversity of fauna with proximity to adjacent habitats, and the underlying processes that they reflect, likely depend on the physiognomy of the habitat.
Resumo:
The effects of nutrient availability and litter quality on litter decomposition were measured in two oligotrophic phosphorus (P)-limited Florida Everglades esturies, United States. The two estuaries differ, in that one (Shark River estuary) is directly connected to the Gulf of Mexico and receives marine P, while the other (Taylor Slough estuary) does not receive marine P because Florida Bay separates it from the Gulf of Mexico. Decomposition of three macrophytes.Cladium jamaicense, Eleochaaris spp., andJuncus roemerianus, was studied using a litter bag technique over 18 mo. Litter was exposed to three treatments: soil surface+macroinvertebrates (=macro), soil surface without macroinvertebrates (=wet), and above the soil and water (=aerial). The third treatment replicated the decomposition of standing dead leaves. Decomposition rates showed that litter exposed to the wet and macro treatments decomposed significantly faster than the aerial treatment, where atmospheric deposition was the only source of nutrients. Macroinvertebrates had no influence on litter decompostion rates.C. jamaicense decomposed faster at sites, with higher P, andEleocharis spp. decomposed significantly faster at sites with higher nitrogen (N). Initial tissue C:N and C:P molar ratios revealed that the nutrient quality of litter of bothEleocharis spp. andJ. roemerianus was higher thanC. jamaicense, but onlyEleocharis spp. decomposed faster thanC. jamaicense. C. jamaicense litter tended to immobilize P, whileEleocharis spp. litter showed net remineralization of N and P. A comparison with other estuarine and wetland systems revealed the dependence of litter decomposition on nutrient availability and litter quality. The results from this experiment suggest that Everglades restoration may have an important effect on key ecosystem processes in the estuarine ecotone of this landscape.
Resumo:
Many coastal wetland communities of south Florida have been cut off from freshwater sheet flow for decades and are migrating landward due to salt-water encroachment. A paleoecological study using mollusks was conducted to assess the rates and effects of salt-water encroachment due to freshwater diversion and sea level rise on coastal wetland basins in Biscayne National Park. Modem mollusk distributions taken from 226 surface sites were used to determine local habitat affinities which were applied to infer past environments from mollusk distributions found in soil cores. Mollusks species compositions were found to be strongly correlated to habitat and salinity, providing reliable predictions. Wetland soils were cored to bedrock at 36locations. Mollusks were abundant throughout the cores and 15 of the 20 most abundant taxa served as bioindicators of salinity and habitat. Historic accounts coupled with mollusk based inference models indicate (1) increasing salinity levels along the coast and encroaching into the interior with mangroves communities currently migrating westward, (2) replacement of a mixed graminoid-mangrove zone by a dense monoculture of dwarf mangroves, and (3) a confinement of freshwater and freshwater graminoid marsh to landward areas between urban developments and drainage canals.
Resumo:
Carbon pools and fluxes were quantified along an environmental gradient in northern Arizona. Data are presented on vegetation, litter, and soil C pools and soil CO2 fluxes from ecosystems ranging from shrub-steppe through woodlands to coniferous forest and the ecotones in between. Carbon pool sizes and fluxes in these semiarid ecosystems vary with temperature and precipitation and are strongly influenced by canopy cover. Ecosystem respiration is approximately 50 percent greater in the more mesic, forest environment than in the dry shrub-steppe environment. Soil respiration rates within a site vary seasonally with temperature but appear to be constrained by low soil moisture during dry summer months, when approximately 75% of total annual soil respiration occurs. Total annual amount of CO2 respired across all sites is positively correlated with annual precipitation and negatively correlated with temperature. Results suggest that changes in the amount and periodicity of precipitation will have a greater effect on C pools and fluxes than will changes in temperature :in the semiarid Southwestern United States.
Resumo:
Landscape scale environmental gradients present variable spatial patterns and ecological processes caused by climate, topography and soil characteristics and, as such, offer candidate sites to study environmental change. Data are presented on the spatial pattern of dominant species, biomass, and carbon pools and the temporal pattern of fluxes across a transitional zone shifting from Great Basin Desert scrub, up through pinyon-juniper woodlands and into ponderosa pine forest and the ecotones between each vegetation type. The mean annual temperature (MAT) difference across the gradient is approximately 3 degrees C from bottom to top (MAT 8.5-5.5) and annual precipitation averages from 320 to 530 mm/yr, respectively. The stems of the dominant woody vegetation approach a random spatial pattern across the entire gradient, while the canopy cover shows a clustered pattern. The size of the clusters increases with elevation according to available soil moisture which in turn affects available nutrient resources. The total density of woody species declines with increasing soil moisture along the gl-adient, but total biomass increases. Belowground carbon and nutrient pools change from a heterogenous to a homogenous distribution on either side of the woodlands. Although temperature controls the: seasonal patterns of carbon efflux from the soils, soil moisture appears to be the primary driving variable, but response differs underneath the different dominant species, Similarly, decomposition of dominant litter occurs faster-at the cooler and more moist sites, but differs within sites due to litter quality of the different species. The spatial pattern of these communities provides information on the direction of future changes, The ecological processes that we documented are not statistically different in the ecotones as compared to the: adjoining communities, but are different at sites above the woodland than those below the woodland. We speculate that an increase in MAT will have a major impact on C pools and C sequestering and release processes in these semiarid landscapes. However, the impact will be primarily related to moisture availability rather than direct effects of an increase in temperature. (C) 1998 Elsevier Science B.V.
Resumo:
岷江上游地区高山/亚高山植被分布的坡向性分异显著,阴阳坡高山林线不仅物种组成差异明显,并且分布海拔呈现出阴坡高阳坡低的格局.阳坡林线树种主要是圆柏属乔木,林线类型多为渐变型,海拔高度大约在3 400m~3 800m;阴坡林线树种主要是冷杉,林线类型多为骤变型,海拔高度约在3 800m~4 400m.本研究采用土壤种子库物理筛选、室内萌发实验及野外群落调查等方法,对岷江上游地区阴坡岷江冷杉和阳坡祁连圆柏两类林线树种不同海拔梯度上土壤种子库以及幼苗库特征进行了调查,从土壤种子库和幼苗更新特征的角度对林线乔木树种种群更新特征进行了分析,进而对该地区高山林线在阴阳坡分布差异的原因进行了探讨,结果显示: 1.土壤种子库 阴坡:阴坡高山林线附近岷江冷杉土壤种子的平均密度大约为50.96粒/m2,其中树线以上10m处土壤种子密度为1.00粒/m2,树线处大约19.33粒/m2,林线交错带内土壤种子密度最高为136.83粒/m2,郁闭林内种子密度小于林线交错带,只有30.50粒/m2,种子平均空壳率为52%,霉变率达34%,完好种子只有6%.土壤种子库垂直分布特征为地被物层含种子比重最大,大约在67.50%左右;其次为0~2cm层,约18.84%左右;2~5cm层所占种子比例最小,约13.66%左右.霉变种子数量与土壤深度呈负相关. 阳坡:阳坡祁连圆柏土壤种子的平均密度为60.16粒/m2.树线以上10m处密度为1.92粒/m2,树线位置大约108.16粒/m2,林线交错带内平均为75.80粒/m2,郁闭林内种子密度小于林线交错带,只有20.00粒/m2.种子平均空壳率为36%,完好种子占49%,霉变率较低,大约为10%.阴阳坡林线树种土壤种子库垂直分布特征为:地被物层含种子最多,其次为0~4cm层,4~10cm层所占种子比例最小,霉变种子数量与土壤深度也呈负相关. 2. 幼苗库调查 阳坡:在树线以上区域没有发现幼苗,林线交错带内幼苗密度平均达3 250株/hm2,郁闭林内仅2 750株/ hm2.整个样地内1~2a幼苗很少甚至没有出现,3~10a的幼苗相对较多.空间分布上,祁连圆柏幼苗在林线交错带内接近随机分布,郁闭林内则介于随机分布和均匀分布之间. 阴坡:在树线以上幼苗密度为1 250株/ hm2,全部为1~2a幼苗,林线交错带内幼苗密度平均达7 000株/ hm2,郁闭林内达6 250株/ hm2.林线附近岷江冷杉幼苗丰富度以及幼苗的出现频率明显高于祁连圆柏,年龄结构也较祁连圆柏完整.岷江冷杉幼苗空间分布除了树线处幼苗的分布为随机分布,其他海拔则为集群分布. 3.从不同土壤深度的种子总量和幼苗数量的相关性检验发现,当年生幼苗数量跟表层种子总量相关性极显著, 但是两年生幼苗的数量与底层种子数量相关性显著.土壤种子在土壤中的垂直分布格局从一定程度上可以反映种子库的年际特征.岷江冷杉土壤种子库较丰富,种子散布后的存活力随着时间的变化逐渐下降,属于季节性瞬时种子库;祁连圆柏土壤种子散布格局为集群型分布,成熟种子大部分散布在母株冠幅内,属于永久性土壤种子库. 4.在阴坡林线交错带及以上区域还存在较为丰富的乔木土壤种子,并且在树线以上区域还发现了少量的岷江冷杉幼苗.从样地乔木的年龄结构发现,在林线交错带内上部到树线位置主要以幼龄林为主,且年龄结构完整,基本符合入侵性林线特征;阳坡林线交错带内幼苗出现频率很低,树线以上区域虽然存在种子库,但是没有幼苗出现,在林线交错带内乔木径级差距很大,年龄结构异常不完整,这种特征的林线将会面临两个可能结果:一种是维持现有状态,保持平衡;另外一种就是退化,但阳坡林线的实际动态趋势还有待长期定点研究. Treelines on the upper region of Minjiang River differ between the north aspect and the south aspect in their appearances, altitudes and tree species. On the north aspect, trees of Abies form a sharp and abrupt treeline ranging from 3800m to 4400m, while on the south the treeline is generally lower(3 400~3 800m), more open and gradual and mostly composed of Sabina. In this study, we examined the altitudinal gradients of soil seed banks and seedling recruitments at the treeline ecotones of a N-aspect and a S-aspect by using soil sieving, germination experiment and field investigations, analyzed the characteristics of population regeneration of tree species at the transitional zone and presented a analysis of the causes to the aspect-related difference in treeline patterns in the study area. Major results of our study include: 1. Soil seed bank N-aspect: Of the 50 plots investigated, the average density of soil seeds is 50.96/m2, in which well-formed seeds account for 6%, empty seeds 52%, parasitized seeds34%, and seeds damaged by animals 8%. The size of soil seed bank varies along altitude, being 1.00 seeds /m2 at the 10m above the treeline and ca.19.33 seeds/m2 at the upper limit of treeline. The highest density (136.83 seeds/m2) occurs at the treeline ecotone. By contrast, the density of soil seed for the closed forest is only 30.50 seeds/m2. In terms of vertical strata, 67.50% of the total seeds are at the surface layer, 18.84% at the middle layer (0~2cm) and 13.66% at deeper layer (2~5cm). The number of parasitized seeds is negatively correlated to soil depth. S-aspect: Of the 50 plots investigated, the average density of soil seeds is 60.16 seeds/m2, and the well-formed seeds account for 49%, empty seeds 36%, parasitized seeds10%, and seeds damaged by animals 1%. The size of soil seed bank varies along altitude, with 1.92 seeds/m2 recorded at the10m above the treeline,108.16 seeds/m2 at the upper limit of treeline, and 75.80 seeds/m2 at the treeline ecotone, while that for the closed forest is 20.00 seeds/m2. The number of seeds decreases with the depth of soil. As is on the N-aspect, the size of soil bank, from large to small, follows the order of the surface layer, the middle layer (0~4cm) and the bottom layer (4~10cm). The number of parasitized seeds is also negatively correlated to the depth of the soil. 2. Seedling bank N-aspect: A mean maximum seedling abundance of 31 000 seedlings/hm2 was recorded near alpine treeline at growing season. The density of seedlings is 1 250 seedlings/ha (all being 1 or 2 years old) at the alpine meadow 10m away above treeline, 7 000 seedlings/ha at treeline ecotone and 6 250 seedlings/ha for closed forest.The spatial distribution of Abies faxoniana seedlings is random at the upper limit of the treeline but clumped at other altitudes. S-aspect: No seedlings were found at the alpine meadow 10m away from the treeline. The density of seedlings was 3 250 seedlings/ha at treeline ecotone and 2 750 seedlings/ha for the closed forest.Hardly any 1 year current and 2 year-old seedlings appeared at the plots. The spatial distribution of Sabina przewalskii seedlings is random at treeline ecotone and between “random” and “even” forest closed forest. 3.Correlation tests of seedling population and seed bank at different soil layers indicated that the emergents were strongly correlated to seed bank at surface layer while the number of two-year seedlings was significantly correlated to the seed bank at the bottom of soil layer, indicating that germination mainly occurs at the soil surface while the middle or bottom layer was the reserve for non-germination or dead seeds. It can thus be postulated that Abies faxoniana soil seed bank is of seasonal transient type. By contrast, the soil seed bank of Sabina przewalskii is of persistent type and the soil seeds and seedlings of this species occurred more frequently near the islands of adult trees. 4.A good many soil seeds of both tree species were found near the treeline ecotone and above at N- and S-aspects. A few young seedlings were found above the Abies treeline. Investigation of five altitudinal transects respectively on N- and S-aspects indicated that Abies faxoniana has a more complete age structure than the stands of Sabina przewalskii. The age of firs decreased from closed forest to the upper limit of treeline, which suggests that the Abies treeline is advancing to higher altitude. While on the south aspect, only few Sabina przewalskii soil seeds and nearly no seedlings were found above the treeline ecotone. The stands exhibit extremely great difference in diameter classes with significantly incomplete age structure. This would lead to two possible results for the treelines: maintaining an equilibrium state at the current position or degenerating. But more studies should be carried out at longer time scales or larger spatial scales to understand whether the Sabina treeline is degenerating.
Resumo:
Les recherches récapitulées dans cette thèse de doctorat ont porté sur les causes de l’organisation spatiale des végétations périodiques. Ces structures paysagères aux motifs réguliers, tachetés, tigrés ou labyrinthiques, d’échelle décamétrique à hectométrique, couvrant des étendues considérables sur au moins trois continents, constituent un cas d’école dans l’étude des processus endogènes présidant à l’hétérogénéité du couvert végétal. Ces structures prennent place sur un substrat homogène, mis à part la rétroaction du couvert lui-même, et sont marquées par des écotones abrupts et la persistance d’une proportion considérable de sol nu. Plusieurs modèles ont mis en avant l’existence possible d’un phénomène d’auto-organisation du couvert, qui verrait une structure d’ensemble émerger des interactions locales entre individus. Ces modèles se basent sur le jeu simultané de la consommation de la ressource (compétition) et de l’amélioration de l’un ou l’autre des éléments du bilan de la même ressource par le couvert (facilitation). La condition à l’existence d’une structure d’ensemble spatialement périodique et stable réside dans une différence entre la portée de la compétition (plus grande) et celle de la facilitation. L’apparition de ces structures est modulée par le taux de croissance biologique, qui est le reflet des contraintes extérieures telles que l’aridité, le pâturage ou la coupe de bois. Le modus operandi des interactions spatiales supposées entre individus reste largement à préciser.
Nos recherches ont été menées au sud-ouest de la République du Niger, à l’intérieur et dans les environs du parc Régional du W. Trois axes ont été explorés :(i) Une étude de la dépendance spatiale entre la structure de la végétation (biovolumes cartographiés) et les paramètres du milieu abiotique (relief, sol), sur base d’analyses spectrales et cross-spectrales par transformée de Fourier (1D et 2D). (ii) Une étude diachronique (1956, 1975 et 1996) à large échelle (3000 km²) de l’influence de l’aridité et des pressions d’origine anthropique sur l’auto-organisation des végétations périodiques, basée sur la caractérisation de la structure spatiale des paysages sur photos aériennes via la transformée de Fourier en 2D. (iii) Trois études portant sur les interactions spatiales entre individus :En premier lieu, via l’excavation des systèmes racinaires (air pulsé) ;Ensuite, par un suivi spatio-temporel du bilan hydrique du sol (blocs de gypse) ;Enfin, via le marquage de la ressource par du deutérium.
Nous avons ainsi pu établir que les végétations périodiques constituent bien un mode d’auto-organisation pouvant survenir sur substrat homogène et modulé par les contraintes climatiques et anthropiques. Un ajustement rapide entre l’organisation des végétations périodiques et le climat a pu être montrée en zone protégée. La superficie et l’organisation des végétations périodiques y ont tour à tour progressé et régressé en fonction d’épisodes secs ou humides. Par contre, en dehors de l’aire protégée, la possibilité d’une restauration du couvert semble fortement liée au taux d’exploitation des ressources végétales. Ces résultats ont d’importantes implications quant à la compréhension des interactions entre climat et écosystèmes et à l’évaluation de leurs capacités de charge. La caractérisation de la structure spatiale des végétations arides, notamment par la transformée de Fourier d’images HR, devrait être généralisée comme outil de monitoring de l’état de ces écosystèmes. Nos études portant sur les modes d’interactions spatiales ont permis de confirmer l’existence d’une facilitation à courte portée du couvert végétal sur la ressource. Cependant, cette facilitation ne semble pas s’exercer sur le terme du bilan hydrique traditionnellement avancé, à savoir l’infiltration, mais plutôt sur le taux d’évaporation (deux fois moindre à l’ombre des canopées). Ce mécanisme exclut l’existence de transferts diffusifs souterrains entre sols nu et fourrés. Des transferts inverses semblent d’ailleurs montrés par le marquage isotopique. L’étude du bilan hydrique et la cartographie du micro-relief, ainsi que la profondeur fortement réduite de la zone d’exploitation racinaire, jettent de sérieux doutes quant au rôle communément admis des transferts d’eau par ruissellement/diffusion de surface en tant que processus clé dans la compétition à distance entre les plantes. L’alternative réside dans l’existence d’une compétition racinaire de portée supérieure aux canopées. Cette hypothèse trouve une confirmation tant par les rhizosphères excavées, superficielles et étendues, que dans le marquage isotopique, montrant des contaminations d’arbustes situés à plus de 15 m de la zone d’apport. De même, l’étude du bilan hydrique met en évidence les influences simultanées et contradictoires (facilitation/compétition) des ligneux sur l’évapotranspiration.
/
This PhD thesis gathers results of a research dealing with the causes of the spatial organisation of periodic vegetations. These landscape structures, featuring regular spotted, labyrinthine or banded patterns of decametric to hectometric scale, and extending over considerable areas on at least three continents, constitute a perfect study case to approach endogenous processes leading to vegetation heterogeneities. These patterns occur over homogeneous substratum, except for vegetation’s own feedbacks, and are marked by sharp ecotones and the persistence of a considerable amount of bare soil. A number of models suggested a possible case of self-organized patterning, in which the general structure would emerge from local interactions between individuals. Those models rest on the interplay of competitive and facilitative effects, relating to soil water consumption and to soil water budget enhancement by vegetation. A general necessary condition for pattern formation to occur is that negative interactions (competition) have a larger range than positive interactions (facilitation). Moreover, all models agree with the idea that patterning occurs when vegetation growth decreases, for instance as a result of reduced water availability, domestic grazing or wood cutting, therefore viewing patterns as a self-organised response to environmental constraints. However the modus operandi of the spatial interactions between individual plants remains largely to be specified.
We carried out a field research in South-West Niger, within and around the W Regional Park. Three research lines were explored: (i) The study of the spatial dependency between the vegetation pattern (mapped biovolumes) and the factors of the abiotic environment (soil, relief), on the basis of spectral and cross-spectral analyses with Fourier transform (1D and 2D). (ii) A broad scale diachronic study (1956, 1975, 1996) of the influence of aridity and human induced pressures on the vegetation self-patterning, based on the characterisation of patterns on high resolution remote sensing data via 2D Fourier transform. (iii) Three different approaches of the spatial interactions between individuals: via root systems excavation with pulsed air; via the monitoring in space and time of the soil water budget (gypsum blocks method); and via water resource labelling with deuterated water.
We could establish that periodic vegetations are indeed the result of a self-organisation process, occurring in homogeneous substratum conditions and modulated by climate and human constraints. A rapid adjustment between vegetation patterning and climate could be observed in protected zones. The area and patterning of the periodic vegetations successively progressed and regressed, following drier or wetter climate conditions. On the other hand, outside protected areas, the restoration ability of vegetation appeared to depend on the degree of vegetation resource exploitation. These results have important implications regarding the study of vegetation-climate interactions and the evaluation of ecosystems’ carrying capacities. Spatial pattern characterisation in arid vegetations using Fourier transform of HR remote sensing data should be generalised for the monitoring of those ecosystems. Our studies dealing with spatial interaction mechanisms confirmed the existence of a short range facilitation of the cover on water resource. However, this facilitation does not seem to act through the commonly accepted infiltration component, but rather on the evaporative rate (twice less within thickets). This mechanism excludes underground diffusive transfers between bare ground and vegetation. Inverse transfers were even shown by deuterium labelling. Water budget study and micro-elevation mapping, along with consistent soil shallowness, together cast serious doubts on the traditional mechanism of run-off/diffusion of surface water as a key process of the long range competition between plants. An alternative explanation lies in long range root competition. This hypothesis find support as well in the excavated root systems, shallow and wide, as in isotopic labelling, showing contaminations of shrubs located up to 15 m of the irrigated area. Water budget study also evidenced simultaneous contradictory effects (facilitation/competition) of shrubs on evapotranspiration.
Resumo:
The new class, the Tamaricetea arceuthoidis, is described covering riparian and intermittent shrubby vegetation of the Irano-Turanian Region in the southwestern and Central Asia and the Lower Volga valley. The dominating species are species of the genus Tamarix that refer high water table in arid and semi-arid habitats with high to moderate salinity. This new class is an ecological analogon of the Nerio-Tamaricetea occurring in the Mediterranean Basin.
Resumo:
An increase in edge area reduces the effective size of habitat fragments and thus the area available for habitat-interior specialists. However, it is unclear how edge effects compare at different ecotones in the same system. We investigated the response of a small mammal community associated with Afromontane forests to edge effects at three different habitat transitions: natural forest to grassland (natural edge, structurally different vegetation types), natural forest to mature plantation (human-altered edge, structurally similar vegetation types) and natural forest to harvested plantation (human-altered edge, structurally different vegetation types). We predicted that edge effects should be less severe at natural ecotones and at similarly structured contiguous vegetation types than human-altered ecotones and differently structured contiguous vegetation types, respectively. We found that forest species seemed to avoid all habitat edges in our study area. Surprisingly, natural edges supported a less diverse small mammal community than human-altered forest edges. However, edge effects were observed deeper into native forests surrounded by mature alien plantations (and more so at harvested plantations) than into native forests surrounded by native grasslands. The net effect of mature plantations was therefore to reduce the functional size of the natural forest by creating a larger edge. We suggest that when plantations are established a buffer zone of natural vegetation be left between natural forests and newly established plantations to mitigate the negative effects of plantation forestry.
Resumo:
The majority, if not all, species have a limited geographic range bounded by a distribution edge. Violent ecotones such as sea coasts clearly produce edges for many species; however such ecotones, while sufficient for the formation of an edge, are not always necessary. We demonstrate this by simulation in discrete time of a spatially structured finite size metapopulation subjected to a spatial gradient in per-unit-time population extinction probability together with spatially structured dispersal and recolonisation. We find that relatively sharp edges separating a homeland or main geographical range from an outland or zone of relatively sparse and ephemeral colonisation can form in gradual environmental gradients. The form and placing of the edge is an emergent property of the metapopulation dynamics. The sharpness of the edge declines with increasing dispersal distance, and is dependent on the relative scales of dispersal distance and gradient length. The space over which the edge develops is short relative to the potential species range. The edge is robust against changes in both the shape of the environmental gradient and to a lesser extent to alterations in the kind of dispersal operating. Persistence times in the absence of environmental gradients are virtually independent of the shape of the dispersal function describing migration. The common finding of bell shaped population density distributions across geographic ranges may occur without the strict necessity of a niche mediated response to a spatially autocorrelated environment.
Resumo:
The Middle Stone Age (MSA) covers the evolution, emergence, and dispersal of Homo sapiens. This article focuses on archaeological data and on published material from key stratified sites with some form of geochronological control from across eastern Africa. The MSA is often characterised by a shift from handaxe production towards discoidal and Levallois techniques. Although evidence for the controlled use of fire remains minimal, it seems likely that MSA hominins used it, as well as being highly skilled in working stone and probably bone and wood. MSA hominins appear to have exploited a range of different ecozones and many MSA sites are focused on ecotones, maximising access to resources. Over time, use of rockshelters and caves also seems to have increased. Although much work remains, the MSA is presently one of the most exciting and dynamic periods in the study of human evolution.
Resumo:
A conservação da biodiversidade nunca foi uma assunto tão popular como nas últimas décadas, mas esta popularidade crescente é devida à pior das razões: o passo acelerado da extinção de espécies e habitats. Os ecossistemas tropicais são, ao mesmo tempo, os mais diversos e os mais ameaçados, em parte porque muitos países destas regiões emergem ainda de situações de instabilidade social, económica e política. O Brasil é o maior país Neotropical, onde se encontram alguns dos biomas com maior diversidade e mais ameaçados do planeta. Actualmente, é também um país líder ao nível da planificação e implementação de medidas de conservação da biodiversidade. Vários dos biomas tropicais mais diversos e ameaçados encontram-se em território brasileiro. Dois destes biomas, a Amazónia e o Cerrado, convergem numa região ecotonal sujeita a uma elevada pressão humana, conhecida como o arco do desmatamento. O Araguaia, um dos maiores rios do Brasil, corre ao longo desta paisagem e os efeitos do desmatamento são já evidentes em toda a sua bacia. Por causa do acelerado ritmo de degradação deste ecossistema, torna-se urgente obter uma imagem clara da biodiversidade regional e compreender como e se a estratégia de conservação para esta região é capaz de lidar com as correntes ameaças e alcançar o seu objectivo a longo prazo: conservar a biota regional. Tendo a herpetofauna como grupo-alvo, os nossos objectivos principais foram: aumentar o conhecimento das comunidades de anfíbios e répteis squamata da região do curso médio do Rio Araguaia; compreender a importância deste rio nos padrões intraespecíficos de estrutura e diversidade genética para diferentes espécies com diferentes características ecológicas; avaliar o potencial de diferentes metodologias para o estudo e monitorização da herpetofauna regional. Os nossos resultados revelam que a amostragem continuada e o uso de diferentes técnicas são essenciais para a obtenção de uma imagem precisa da diversidade da herpetofauna local. As comunidades locais de anfíbios e lagartos apresentaram maior riqueza específica na Área de Protecção Ambiental Bananal/Cantão (APABC), uma área tampão, do no Parque Estadual do Cantão (PEC), uma área de conservação estrita. A APABC é caracterizada por uma maior heterogeneidade de habitats e os nosso resultados corroboram a teoria da heterogeneidade espacial e resultados recentes que revelam uma maior diversidade de lagartos nas zonas interfluviais do Cerrado, do que nas matas de galeria. Os resultados aqui apresentados não corroboram a hipótese de que os ecótonos apresentam maior diversidade do que os biomas em redor. Os nossos resultados revelaram ainda que o Rio Araguaia afecta de forma diferente a estrutura genética de várias espécies de anfíbios e lagartos. Estas diferenças poderão estar relacionadas com a ecologia das espécies, nomeadamente com o uso de diferentes habitats, a vagilidade, ou a estratégia alimentar. Sugerimos que a gestão integração de diferentes unidades de conservação, com diferentes estatutos, podem ajudar a preservar melhor a biota regional.