870 resultados para Ecosystem approach to fisheries management
Resumo:
Participants were exposed to concepts and information about EAFM using a structured, participatory method of delivery. The learning strategy involved specifically designed exercises, using real examples, to consolidate learning. Daily monitoring and reviews were conducted together with pre-and post-course assessment.
Resumo:
This report presents presentations from representatives of 12 countries, key outcomes and recommendations for the future.
Resumo:
Interaction with ecological models can improve stakeholder participation in fisheries management. Problems exist in efficiently communicating outputs to stakeholders and an objective method of structuring stakeholder differences is lacking. This paper aims to inform the design of a multi-user communication interface for fisheries management by identifying functional stakeholder groups. Intuitive categorisation of stakeholders, derived from survey responses, is contrasted with an Evidence-Based method derived from analysis of stakeholder literature. Intuitive categorisation relies on interpretation and professional judgement when categorising stakeholders among conventional stakeholder groups. Evidence-Based categorisation quantitatively characterises each stakeholder with a vector of four management objective interest-strength values (Yield, Employment, Profit and Ecosystem Preservation). Survey respondents agreed little in forming intuitive groups and the groups were poorly defined and heterogeneous in interests. In contrast the Evidence-Based clusters were well defined and largely homogeneous, so more useful for identifying functional relations with model outputs. The categorisations lead to two different clusterings of stakeholders and suggest unhelpful stereotyping of stakeholders may occur with the Intuitive categorisation method. Stakeholder clusters based on literature-evidence show a high degree of common interests among clusters and is encouraging for those seeking to maximise dialogue and consensus forming. © 2013 Elsevier Ltd.
Resumo:
This work represents an original contribution to the methodology for ecosystem models' development as well as the rst attempt of an end-to-end (E2E) model of the Northern Humboldt Current Ecosystem (NHCE). The main purpose of the developed model is to build a tool for ecosystem-based management and decision making, reason why the credibility of the model is essential, and this can be assessed through confrontation to data. Additionally, the NHCE exhibits a high climatic and oceanographic variability at several scales, the major source of interannual variability being the interruption of the upwelling seasonality by the El Niño Southern Oscillation, which has direct e ects on larval survival and sh recruitment success. Fishing activity can also be highly variable, depending on the abundance and accessibility of the main shery resources. This context brings the two main methodological questions addressed in this thesis, through the development of an end-to-end model coupling the high trophic level model OSMOSE to the hydrodynamics and biogeochemical model ROMS-PISCES: i) how to calibrate ecosystem models using time series data and ii) how to incorporate the impact of the interannual variability of the environment and shing. First, this thesis highlights some issues related to the confrontation of complex ecosystem models to data and proposes a methodology for a sequential multi-phases calibration of ecosystem models. We propose two criteria to classify the parameters of a model: the model dependency and the time variability of the parameters. Then, these criteria along with the availability of approximate initial estimates are used as decision rules to determine which parameters need to be estimated, and their precedence order in the sequential calibration process. Additionally, a new Evolutionary Algorithm designed for the calibration of stochastic models (e.g Individual Based Model) and optimized for maximum likelihood estimation has been developed and applied to the calibration of the OSMOSE model to time series data. The environmental variability is explicit in the model: the ROMS-PISCES model forces the OSMOSE model and drives potential bottom-up e ects up the foodweb through plankton and sh trophic interactions, as well as through changes in the spatial distribution of sh. The latter e ect was taken into account using presence/ absence species distribution models which are traditionally assessed through a confusion matrix and the statistical metrics associated to it. However, when considering the prediction of the habitat against time, the variability in the spatial distribution of the habitat can be summarized and validated using the emerging patterns from the shape of the spatial distributions. We modeled the potential habitat of the main species of the Humboldt Current Ecosystem using several sources of information ( sheries, scienti c surveys and satellite monitoring of vessels) jointly with environmental data from remote sensing and in situ observations, from 1992 to 2008. The potential habitat was predicted over the study period with monthly resolution, and the model was validated using quantitative and qualitative information of the system using a pattern oriented approach. The nal ROMS-PISCES-OSMOSE E2E ecosystem model for the NHCE was calibrated using our evolutionary algorithm and a likelihood approach to t monthly time series data of landings, abundance indices and catch at length distributions from 1992 to 2008. To conclude, some potential applications of the model for shery management are presented and their limitations and perspectives discussed.
Resumo:
Executive Summary: The EcoGIS project was launched in September 2004 to investigate how Geographic Information Systems (GIS), marine data, and custom analysis tools can better enable fisheries scientists and managers to adopt Ecosystem Approaches to Fisheries Management (EAFM). EcoGIS is a collaborative effort between NOAA’s National Ocean Service (NOS) and National Marine Fisheries Service (NMFS), and four regional Fishery Management Councils. The project has focused on four priority areas: Fishing Catch and Effort Analysis, Area Characterization, Bycatch Analysis, and Habitat Interactions. Of these four functional areas, the project team first focused on developing a working prototype for catch and effort analysis: the Fishery Mapper Tool. This ArcGIS extension creates time-and-area summarized maps of fishing catch and effort from logbook, observer, or fishery-independent survey data sets. Source data may come from Oracle, Microsoft Access, or other file formats. Feedback from beta-testers of the Fishery Mapper was used to debug the prototype, enhance performance, and add features. This report describes the four priority functional areas, the development of the Fishery Mapper tool, and several themes that emerged through the parallel evolution of the EcoGIS project, the concept and implementation of the broader field of Ecosystem Approaches to Management (EAM), data management practices, and other EAM toolsets. In addition, a set of six succinct recommendations are proposed on page 29. One major conclusion from this work is that there is no single “super-tool” to enable Ecosystem Approaches to Management; as such, tools should be developed for specific purposes with attention given to interoperability and automation. Future work should be coordinated with other GIS development projects in order to provide “value added” and minimize duplication of efforts. In addition to custom tools, the development of cross-cutting Regional Ecosystem Spatial Databases will enable access to quality data to support the analyses required by EAM. GIS tools will be useful in developing Integrated Ecosystem Assessments (IEAs) and providing pre- and post-processing capabilities for spatially-explicit ecosystem models. Continued funding will enable the EcoGIS project to develop GIS tools that are immediately applicable to today’s needs. These tools will enable simplified and efficient data query, the ability to visualize data over time, and ways to synthesize multidimensional data from diverse sources. These capabilities will provide new information for analyzing issues from an ecosystem perspective, which will ultimately result in better understanding of fisheries and better support for decision-making. (PDF file contains 45 pages.)
Resumo:
The BOBLME Project supports member countries to produce fishery management plans for hilsa and Indian Mackerel using an ecosystem approach to fisheries management (EAFM). The EAFM has three tiers: technical studies to provide information; a Regional Fisheries Management Committee (RFMAC) to interpret the information and deliver ecosystem based fisheries management advice; and a Regional Fisheries Management Forum to deliberate on the advice as it relates to national actions.
Resumo:
The role of the Regional Fisheries Management Advisory Committee (RFMAC) is to interpret information and deliver ecosystem based fisheries management advice. The meeting was able to deliver Ecosystem Approach to Fisheries Management (EAFM) advisories for the hilsa and Indian Mackerel fisheries.
Resumo:
Market squid (Loligo opalescens) plays a vital role in the California ecosystem and serves as a major link in the food chain as both a predator and prey species. For over a century, market squid has also been harvested off the California coast from Monterey to San Pedro. Expanding global markets, coupled with a decline in squid product from other parts of the world, in recent years has fueled rapid expansion of the virtually unregulated California fishery. Lack of regulatory management, in combination with dramatic increases in fishing effort and landings, has raised numerous concerns from the scientific, fishing, and regulatory communities. In an effort to address these concerns, the National Oceanic and Atmospheric Administration’s (NOAA) Channel Islands National Marine Sanctuary (CINMS) hosted a panel discussion at the October 1997 California Cooperative Oceanic and Fisheries Investigations (CalCOFI) Conference; it focused on ecosystem management implications for the burgeoning market squid fishery. Both panel and audience members addressed issues such as: the direct and indirect effects of commercial harvesting upon squid biomass; the effects of harvest and the role of squid in the broader marine community; the effects of environmental variation on squid population dynamics; the sustainability of the fishery from the point of view of both scientists and the fishers themselves; and the conservation management options for what is currently an open access and unregulated fishery. Herein are the key points of the ecosystem management panel discussion in the form of a preface, an executive summary, and transcript. (PDF contains 33 pages.)
Resumo:
Solomon Islands has recently developed substantial policy aiming to support inshore fisheries management, conservation, climate change adaptation and ecosystem approaches to resource management. A large body of experience in community based approaches to management has developed but “upscaling” and particularly the implementation of nation-wide approaches has received little attention so far. With the emerging challenges posed by climate change and the need for ecosystem wide and integrated approaches attracting serious donor attention, a national debate on the most effective approaches to implementation is urgently needed. This report discusses potential implementation of “a cost-effective and integrated approach to resource management that is consistent with national policy and needs” based on a review of current policy and institutional structures and examination of a recent case study from Lau, Malaita using stakeholder, transaction and financial cost analyses.
Resumo:
Fisheries in the USA are managed under the Magnuson Fishery Conservation and Management Act of 1976 (MFCMA). By 1991, it was reported that fish stocks had declined considerably since the act came into force. A national Committee in Fisheries was set up in 1992 to investigate ways of improving fisheries management regimes. The committee's seven recommendations framed in four broad areas are: (1) prevent overfishing; (2) improve the institutional structure; (3) improve the quality of fishery science and data; and (4) move toward an ecosystem approach to fishery management. These recommendations are designed to enchance the most effective aspects of the present MFCMA and to introduce critically needed clarifications and structured improvements.
Resumo:
The central research question that this thesis addresses is whether there is a significant gap between fishery stakeholder values and the principles and policy goals implicit in an Ecosystem Approach to Fisheries Management (EAFM). The implications of such a gap for fisheries governance are explored. Furthermore an assessment is made of what may be practically achievable in the implementation of an EAFM in fisheries in general and in a case study fishery in particular. The research was mainly focused on a particular case study, the Celtic Sea Herring fishery and its management committee, the Celtic Sea Herring Management Advisory Committee (CSHMAC). The Celtic Sea Herring fishery exhibits many aspects of an EAFM and the fish stock has successfully recovered to healthy levels in the past 5 years. However there are increasing levels of governance related conflict within the fishery which threaten the future sustainability of the stock. Previous research on EAFM governance has tended to focus either on higher levels of EAFM governance or on individual behaviour but very little research has attempted to link the two spheres or explore the relationship between them. Two main themes within this study aimed to address this gap. The first was what role governance could play in facilitating EAFM implementation. The second theme concerned the degree of convergence between high-level EAFM goals and stakeholder values. The first method applied was governance benchmarking to analyse systemic risks to EAFM implementation. This found that there are no real EU or national level policies which provide stakeholders or managers with clear targets for EAFM implementation. The second method applied was the use of cognitive mapping to explore stakeholders understandings of the main ecological, economic and institutional driving forces in the Celtic Sea Herring fishery. The main finding from this was that a long-term outlook can and has been incentivised through a combination of policy drivers and participatory management. However the fundamental principle of EAFM, accounting for ecosystem linkages rather than target stocks was not reflected in stakeholders cognitive maps. This was confirmed in a prioritisation of stakeholders management priorities using Analytic Hierarchy Process which found that the overriding concern is for protection of target stock status but that wider ecosystem health was not a priority for most management participants. The conclusion reached is that moving to sustainable fisheries may be a more complex process than envisioned in much of the literature and may consist of two phases. The first phase is a transition to a long-term but still target stock focused approach. This achievable transition is mainly a strategic change, which can be incentivised by policies and supported by stakeholders. In the Celtic Sea Herring fishery, and an increasing number of global and European fisheries, such transitions have contributed to successful stock recoveries. The second phase however, implementation of an ecosystem approach, may present a greater challenge in terms of governability, as this research highlights some fundamental conflicts between stakeholder perceptions and values and those inherent in an EAFM. This phase may involve the setting aside of fish for non-valued ecosystem elements and will require either a pronounced mind-set and value change or some strong top-down policy incentives in order to succeed. Fisheries governance frameworks will need to carefully explore the most effective balance between such endogenous and exogenous solutions. This finding of low prioritisation of wider ecosystem elements has implications for rights based management within an ecosystem approach, regardless of whether those rights are individual or collective.
Resumo:
We assessed ten trophodynamic indicators of ecosystem status for their sensitivity and specificity to fishing management using a size-resolved multispecies fish community model. The responses of indicators to fishing depended on effort and the size selectivity (sigmoid or Gaussian) of fishing mortality. The highest specificity against sigmoid (trawl-like) size selection was seen from inverse fishing pressure and the large fish indicator, but for Gaussian size selection, the large species indicator was most specific. Biomass, mean trophic level of the community and of the catch, and fishing in balance had the lowest specificity against both size selectivities. Length-based indicators weighted by biomass, rather than abundance, were more sensitive and specific to fishing pressure. Most indicators showed a greater response to sigmoid than Gaussian size selection. Indicators were generally more sensitive at low levels of effort because of nonlinear sensitivity in trophic cascades to fishing mortality. No single indicator emerged as superior in all respects, so given available data, multiple complementary indicators are recommended for community monitoring in the ecosystem approach to fisheries management.
Resumo:
This document provides guidelines for fish stock assessment and fishery management using the software tools and other outputs developed by the United Kingdom's Department for International Development's Fisheries Management Science Programme (FMSP) from 1992 to 2004. It explains some key elements of the precautionary approach to fisheries management and outlines a range of alternative stock assessment approaches that can provide the information needed for such precautionary management. Four FMSP software tools, LFDA (Length Frequency Data Analysis), CEDA (Catch Effort Data Analysis), YIELD and ParFish (Participatory Fisheries Stock Assessment), are described with which intermediary parameters, performance indicators and reference points may be estimated. The document also contains examples of the assessment and management of multispecies fisheries, the use of Bayesian methodologies, the use of empirical modelling approaches for estimating yields and in analysing fishery systems, and the assessment and management of inland fisheries. It also provides a comparison of length- and age-based stock assessment methods. A CD-ROM with the FMSP software packages CEDA, LFDA, YIELD and ParFish is included.