847 resultados para Ecosystem Functioning
Resumo:
Las acciones antrópicas han alterado los ecosistemas a escala global mediante cambios en la estructura y función de los sistemas terrestres y acuáticos. En este sentido, la deforestación de bosques ripariales impacta fuertemente sobre los sistemas lóticos como así también el proceso inverso, la conversión de pasturas naturales a bosques debido a forestaciones extensivas. Las nacientes de los arroyos de la provincia de Córdoba se ubican en pastizales dominados por gramíneas, muchos de los cuales han sido reemplazados por plantaciones de coníferas, con potenciales efectos sobre la estructura y el funcionamiento de los cursos de agua. En consecuencia, la evaluación de los efectos de esta actividad forestal sobre los arroyos es esencial para la implementación de adecuadas estrategias de manejo y conservación del recurso acuático. El objetivo de este proyecto es evaluar los efectos de la forestación con pináceas sobre la estructura y el funcionamiento de sistemas fluviales en pastizales de altura de las sierras de Córdoba. Se pretende analizar la dinámica de la biota acuática en arroyos de pastizales y en arroyos forestados. Se cuantificarán productores primarios y materia orgánica particulada y se medirán procesos ecológicos como la producción primaria y descomposición de materia orgánica gruesa. Se espera que la forestación con pináceas altere el ciclo de los nutrientes, disminuya el caudal y cambie el balance de temperatura al incrementar la sombra y el ingreso de materia orgánica particulada gruesa. En consecuencia, y debido a los cambios abióticos contrastantes generados por la implantación de pinos, podrían detectarse alteraciones drásticas en el ecosistema. Se seleccionarán seis arroyos de la subcuenca del arroyo Santa Rosa (Subcuenca Ctalamochita). Tres arroyos discurren en pastizales naturales y tres en áreas forestadas con pináceas. Se tomarán muestras de invertebrados y materia orgánica en el bentos en aguas altas y aguas bajas y se registrarán parámetros físico-químicos. Se colectarán muestras de perifiton para análisis de especies, biomasa y clorofila. Se realizarán experimentos de campo para medir la tasa de degradación de la materia orgánica y la producción primaria. La detección del grado de alteración de los sistemas naturales es el punto de partida para la implementación de apropiadas estragias de manejo del recurso. Entre los indicadores que permitirán verificar el efecto de las forestaciones estan los cambios en la biodiversidad, en la tasa de degradación de materia orgánica y en la producción primaria, como así también en la dinámica de los nutrientes y en los ciclos de caudales. Esta propuesta pretende generar lazos de interrelación entre distintos sectores para la implementación efectiva de planes de conservación y restauración y propiciar las relaciones necesarias para el logro de objetivos que beneficien a la sociedad como un todo.
Resumo:
The biological variation in nature is called biodiversity. Anthropogenic pressures have led to a loss of biodiversity, alarming scientists as to what consequences declining diversity has for ecosystem functioning. The general consensus is that diversity (e.g. species richness or identity) affects functioning and provides services from which humans benefit. The aim of this thesis was to investigate how aquatic plant species richness and identity affect ecosystem functioning in terms of processes such as primary production, nutrient availability, epifaunal colonization and properties e.g. stability of Zostera marina subjected to shading. The main work was carried out in the field and ranged temporally from weeklong to 3.5 months-long experiments. The experimental plants used frequently co-occur in submerged meadows in the northern Baltic Sea and consist of eelgrass (Z. marina), perfoliate pondweed (Potamogeton perfoliatus), sago pondweed (P. pectinatus), slender-leaved pondweed (P. filiformis) and horned pondweed (Zannichellia palustris). The results showed that plant richness affected epifaunal community variables weakly, but had a strong positive effect on infaunal species number and functional diversity, while plant identity had strong effects on amphipods (Gammarus spp.), of which abundances were higher in plant assemblages consisting of P. perfoliatus. Depending on the starting standardizing unit, plant richness showed varying effects on primary production. In shoot density-standardized plots, plant richness increased the shoot densities of three out of four species and enhanced the plant biomass production. Both positive complementarity and selection effects were found to underpin the positive biodiversity effects. In shoot biomass-standardized plots, richness effects only affected biomass production of one species. Negative selection was prevalent, counteracting positive complementarity, which resulted in no significant biodiversity effect. The stability of Z. marina was affected by plant richness in such that Z. marina growing in polycultures lost proportionally less biomass than Z. marina in monocultures and thus had a higher resistance to shading. Monoculture plants in turn gained biomass faster, and thereby had a faster recovery than Z. marina growing in polycultures. These results indicate that positive interspecific interactions occurred during shading, while the faster recovery of monocultures suggests that the change from shading stress to recovery resulted in a shift from positive interactions to resource competition between species. The results derived from this thesis show that plant diversity affects ecosystem functioning and contribute to the growing knowledge of plant diversity being an important component of aquatic ecosystems. Diverse plant communities sustain higher primary productivity than comparable monocultures, affect faunal communities positively and enhance stability. Richness and identity effects vary, and identity has generally stronger effects on more variables than richness. However, species-rich communities are likely to contain several species with differing effects on functions, which renders species richness important for functioning. Mixed meadows add to coastal ecosystem functioning in the northern Baltic Sea and may provide with services essential for human well-being.
Resumo:
Rapid changes in biodiversity are occurring globally, as a consequence of anthropogenic disturbance. This has raised concerns, since biodiversity is known to significantly contribute to ecosystem functions and services. Marine benthic communities participate in numerous functions provided by soft-sedimentary ecosystems. Eutrophication-induced oxygen deficiency is a growing threat against infaunal communities, both in open sea areas and in coastal zones. There is thus a need to understand how such disturbance affects benthic communities, and what is lost in terms of ecosystem functioning if benthic communities are harmed. In this thesis, the status of benthic biodiversity was assessed for the open Baltic Sea, a system severely affected by broad-scale hypoxia. Long-term monitoring data made it possible to establish quantitative biodiversity baselines against which change could be compared. The findings show that benthic biodiversity is currently severely impaired in large areas of the open Baltic Sea, from the Bornholm Basin to the Gulf of Finland. The observed reduction in biodiversity indicates that benthic communities are structurally and functionally impoverished in several of the sub-basins due to the hypoxic stress. A more detailed examination of disturbance impacts (through field studies and -experiments) on benthic communities in coastal areas showed that changes in benthic community structure and function took place well before species were lost from the system. The degradation of benthic community structure and function was directed by the type of disturbance, and its specific temporal and spatial characteristics. The observed shifts in benthic trait composition were primarily the result of reductions in species’ abundances, or of changes in demographic characteristics, such as the loss of large, adult bivalves. Reduction in community functions was expressed as declines in the benthic bioturbation potential and in secondary biomass production. The benthic communities and their degradation accounted for a substantial proportion of the changes observed in ecosystem multifunctionality. Individual ecosystem functions (i.e. measures of sediment ecosystem metabolism, elemental cycling, biomass production, organic matter transformation and physical structuring) were observed to differ in their response to increasing hypoxic disturbance. Interestingly, the results suggested that an impairment of ecosystem functioning could be detected at an earlier stage if multiple functions were considered. Importantly, the findings indicate that even small-scale hypoxic disturbance can reduce the buffering capacity of sedimentary ecosystem, and increase the susceptibility of the system towards further stress. Although the results of the individual papers are context-dependent, their combined outcome implies that healthy benthic communities are important for sustaining overall ecosystem functioning as well as ecosystem resilience in the Baltic Sea.
Resumo:
Coastal areas harbour high biodiversity, but are simultaneously affected by rapid degradations of species and habitats due to human interactions. Such alterations also affect the functioning of the ecosystem, which is primarily governed by the characteristics or traits expressed by the organisms present. Marine benthic fauna is nvolved in numerous functions such as organic matter transformation and transport, secondary production, oxygen transport as well as nutrient cycling. Approaches utilising the variety of faunal traits to assess benthic community functioning have rapidly increased and shown the need for further development of the concept. In this thesis, I applied biological trait analysis that allows for assessments of a multitude of categorical traits and thus evaluation of multiple functional aspects simultaneously. I determined the functional trait structure, diversity and variability of coastal zoobenthic communities in the Baltic Sea. The measures were related to recruitment processes, habitat heterogeneity, large-scale environmental and taxonomic gradients as well as anthropogenic impacts. The studies comprised spatial scales from metres to thousands of kilometres, and temporal scales spanning one season as well as a decade. The benthic functional structure was found to vary within and between seagrass landscape microhabitats and four different habitats within a coastal bay, in papers I and II respectively. Expressions of trait categories varied within habitats, while the density of individuals was found to drive the functional differences between habitats. The findings in paper III unveiled high trait richness of Finnish coastal benthos (25 traits and 102 cateogries) although this differed between areas high and low in salinity and human pressure. In paper IV, the natural reduction in taxonomic richness across the Baltic Sea led to an overall reduction in function. However, functional richness in terms of number of trait categories remained comparatively high at low taxon richness. Changes in number of taxa within trait categories were also subtle and some individual categories were maintained or even increased. The temporal analysis in papers I and III highlighted generalities in trait expressions and dominant trait categories in a seagrass landscape as well as a “type organism” for the northern Baltic Sea. Some initial findings were made in all four papers on the role of common and rare species and traits for benthic community functioning. The findings show that common and rare species may not always express the same trait categories in relation to each other. Rare species in general did not express unique functional properties. In order to advance the understanding of the approach, I also assessed some issues concerning the limitations of the concept. This was conducted by evaluating the link between trait category and taxonomic richness using especially univariate measures. My results also show the need to collaborate nationally and internationally on safeguarding the utility of taxonomic and trait data. The findings also highlight the importance of including functional trait information into current efforts in marine spatial planning and biomonitoring.
Resumo:
Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.
Resumo:
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se.
Resumo:
Healthy soils are critical to agriculture, and both are essential to enabling food security. Soil-related challenges include using soils and other natural resources sustainably, combating land and soil degradation, avoiding further reduction of soil-related ecosystem services, and ensuring that all agricultural land is managed sustainably. Agricultural challenges include improving the quantity and quality of agricultural outputs to satisfy rising human needs, also in a 2 degrees world; maintaining diversity in agricultural systems while supporting those farms with the highest potential for closing existing yield gaps; and providing a livelihood for about 2.6 billion mostly poor land users. The greatest needs and potentials lie in small-scale farming, although there as elsewhere, trade-offs must be negotiated within the nexus of water, energy, land and food, including the role of soil therein.
Resumo:
We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.
Resumo:
133 p.
Using life strategies to explore the vulnerability of ecosystem services to invasion by alien plants
Resumo:
Invasive plants can have different effects of ecosystem functioning and on the provision of ecosystem services, from strongly deleterious impacts to positive effects. The nature and intensity of such effects will depend on the service and ecosystem being considered, but also on features of life strategies of invaders that influence their invasiveness as well as their influence of key processes of receiving ecosystems. To address the combined effect of these various factors we developed a robust and efficient methodological framework that allows to identify areas of possible conflict between ecosystem services and alien invasive plants, considering interactions between landscape invasibility and species invasiveness. Our framework combines the statistical robustness of multi-model inference, efficient techniques to map ecosystem services, and life strategies as a functional link between invasion, functional changes and potential provision of services by invaded ecosystems. The framework was applied to a test region in Portugal, for which we could successfully predict the current patterns of plant invasion, of ecosystem service provision, and finally of probable conflict (expressing concern for negative impacts, and value for positive impacts on services) between alien species richness (total and per plant life strategy) and the potential provision of selected services. Potential conflicts were identified for all combinations of plant strategy and ecosystem service, with an emphasis for those concerning conflicts with carbon sequestration, water regulation and wood production. Lower levels of conflict were obtained between invasive plant strategies and the habitat for biodiversity supporting service. The added value of the proposed framework in the context of landscape management and planning is discussed in perspective of anticipation of conflicts, mitigation of negative impacts, and potentiation of positive effects of plant invasions on ecosystems and their services.
Resumo:
Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ('ORCHIDEE'), and the other a forest growth model particularly developed for Mediterranean simulations ('GOTILWA+'), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.
Resumo:
Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere – increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Species coexistence has been a fundamental issue to understand ecosystem functioning since the beginnings of ecology as a science. The search of a reliable and all-encompassing explanation for this issue has become a complex goal with several apparently opposing trends. On the other side, seemingly unconnected with species coexistence, an ecological state equation based on the inverse correlation between an indicator of dispersal that fits gamma distribution and species diversity has been recently developed. This article explores two factors, whose effects are inconspicuous in such an equation at the first sight, that are used to develop an alternative general theoretical background in order to provide a better understanding of species coexistence. Our main outcomes are: (i) the fit of dispersal and diversity values to gamma distribution is an important factor that promotes species coexistence mainly due to the right-skewed character of gamma distribution; (ii) the opposite correlation between species diversity and dispersal implies that any increase of diversity is equivalent to a route of “ecological cooling” whose maximum limit should be constrained by the influence of the third law of thermodynamics; this is in agreement with the well-known asymptotic trend of diversity values in space and time; (iii) there are plausible empirical and theoretical ways to apply physical principles to explain important ecological processes; (iv) the gap between theoretical and empirical ecology in those cases where species diversity is paradoxically high could be narrowed by a wave model of species coexistence based on the concurrency of local equilibrium states. In such a model, competitive exclusion has a limited but indispensable role in harmonious coexistence with functional redundancy. We analyze several literature references as well as ecological and evolutionary examples that support our approach, reinforcing the meaning equivalence between important physical and ecological principles.
Resumo:
Major changes to rainfall regimes are predicted for the future but the effect of such changes on terrestrial ecosystem function is largely unknown. We created a rainfall manipulation experiment to investigate the effects of extreme changes in rainfall regimes on ecosystem functioning in a grassland system. We applied two rainfall regimes; a prolonged drought treatment (30 % reduction over spring and summer) and drought/downpour treatment (long periods of no rainfall interspersed with downpours), with an ambient control. Both rainfall manipulations included increased winter rainfall. We measured plant community composition, CO2 fluxes and soil nutrient availability. Plant species richness and cover were lower in the drought/downpour treatment, and showed little recovery after the treatment ceased. Ecosystem processes were less affected, possibly due to winter rainfall additions buffering reduced summer rainfall, which saw relatively small soil moisture changes. However, soil extractable P and ecosystem respiration were significantly higher in rainfall change treatments than in the control. This grassland appears fairly resistant, in the short term, to even the more extreme rainfall changes that are predicted for the region, although prolonged study is needed to measure longer-term impacts. Differences in ecosystem responses between the two treatments emphasise the variety of ecosystem responses to changes in both the size and frequency of rainfall events. Given that model predictions are inconsistent there is therefore a need to assess ecosystem function under a range of potential climate change scenarios.