895 resultados para Ecology, Evolution, Behavior and Systematics
Resumo:
© 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Acknowledgments The authors thank H. H. Nguyen for his early development work on the BeeWatch interface; E. O'Mahony, I. Pearce, and R. Comont for identifying numerous photographed bumblebees; B. Darvill, D. Ewing, and G. Perkins for enabling our partnership with the Bumblebee Conservation Trust; and S. Blake for his investments in developing the NLG feedback. The study was part of the Digital Conservation project of dot.rural, the University of Aberdeen's Digital Economy Research Hub, funded by RCUK (grant reference EP/G066051/1).
Resumo:
Funded by Department of Geography (Durham University) Department of Geography and the Environment (University of Aberdeen) Royal Geographical Society-IBG Carnegie Trust for the Universities of Scotland
Resumo:
Peer reviewed
Resumo:
Several north temperate marine species were recorded on subtidal hard-substratum reef sites selected to produce a gradient of structural complexity. The study employed an established scuba-based census method, the belt transect. The three types of reef examined, with a measured gradient of increasing structural complexity, were natural rocky reef, artificial reef constructed of solid concrete blocks, and artificial reef made of concrete blocks with voids. Surveys were undertaken monthly over a calendar year using randomly placed fixed rope transects. For a number of conspicuous species of fish and invertebrates, significant differences were found between the levels of habitat complexity and abundance. Overall abundance for many of the species examined was 2-3 times higher on the complex artificial habitats than on simple artificial or natural reef habitats. The enhanced habitat availability produced by the increased structural complexity delivered through specifically designed artificial reefs may have the potential to augment faunal abundance while promoting species diversity.
Resumo:
In ring-tailed lemurs, Lemur catta, the factors modulating hypothalamic-pituitaryadrenal (HPA) activity differ between wild and semi-free-ranging populations. Here we assess factors modulating HPA activity in ring-tailed lemurs housed in a third environment: the zoo. First we validate an enzyme immunoassay to quantify levels of glucocorticoid (GC) metabolites in the faeces of L. catta . We determine the nature of the femalefemale dominance hierarchies within each group by computing David's scores and examining these in relation to faecal GC (fGC). Relationships between female age and fGC are assessed to evaluate potential age-related confounds. The associations between fGC, numbers of males in a group and reproductive status are explored. Finally, we investigate the value of 7 behaviours in predicting levels of fGC. The study revealed stable linear dominance hierarchies in females within each group. The number of males in a social group together with reproductive status, but not age, influenced fGC. The 7 behavioural variables accounted for 68% of the variance in fGC. The amounts of time an animal spent locomoting and in the inside enclosure were both negative predictors of fGC. The study highlights the flexibility and adaptability of the HPA system in ring-tailed lemurs.
Resumo:
Understanding the population structure and patterns of gene flow within species is of fundamental importance to the study of evolution. In the fields of population and evolutionary genetics, measures of genetic differentiation are commonly used to gather this information. One potential caveat is that these measures assume gene flow to be symmetric. However, asymmetric gene flow is common in nature, especially in systems driven by physical processes such as wind or water currents. As information about levels of asymmetric gene flow among populations is essential for the correct interpretation of the distribution of contemporary genetic diversity within species, this should not be overlooked. To obtain information on asymmetric migration patterns from genetic data, complex models based on maximum-likelihood or Bayesian approaches generally need to be employed, often at great computational cost. Here, a new simpler and more efficient approach for understanding gene flow patterns is presented. This approach allows the estimation of directional components of genetic divergence between pairs of populations at low computational effort, using any of the classical or modern measures of genetic differentiation. These directional measures of genetic differentiation can further be used to calculate directional relative migration and to detect asymmetries in gene flow patterns. This can be done in a user-friendly web application called divMigrate-online introduced in this study. Using simulated data sets with known gene flow regimes, we demonstrate that the method is capable of resolving complex migration patterns under a range of study designs.
Resumo:
Acknowledgments This work was funded by NERC grant NE/C510467/1 (T. G. Benton and S. B. Piertney) and a University of Leeds Faculty Postdoctoral Fellowship (T. C. Cameron). Data Accessibility The original time series and body size data from these experiments are available to download from DRYAD entry number http://dx.doi.org/10.5061/dryad.bq135.
Resumo:
Acknowledgements. This research was supported by National Natural Science Foundation of China (no. 31370527 and 31261140367) and the National Science and Technology Support Program of China (no. 2012BAD14B01-2). The authors gratefully thank the Huantai Agricultural Station for providing of the Soil Fertility Survey data. We also thank Zheng Liang from China Agricultural University for the soil sampling and analysis in 2011. Thanks are extended to Jessica Bellarby for helpful discussion and suggestions.
Resumo:
The softshell clam Mya arenaria (L.) is currently widespread on the east and west coasts of North America. This bivalve also occurs on western European shores, where the post-Pleistocene origin of the species, whether introduced or relict, has been debated. We collected 320 M. arenaria from 8 locations in Europe and North America. Clams (n = 84) from 7 of the locations were examined for mitochondrial DNA variation by sequencing a section of the cytochrome oxidase 1 (COX1) gene. These were analysed together with 212 sequences, sourced from GenBank, from the same gene from 12 additional locations, chiefly from eastern North America but also 1 site each from western North America and from western Europe. Ten microsatellite loci were also investigated in all 320 clams. Nuclear markers showed reduced levels of variation in certain European samples. The same common COX1 haplotypes and microsatellite alleles were present throughout the range of M. arenaria, although significant differences were identified in haplotypic and allelic composition between many samples, particularly those from the 2 continents (Europe and North America). These findings support the hypothesis of post-Pleistocene colonisation of European shores from eastern North America (and the recorded human transfer of clams from the east to the west coast of North America in the 19th century).
Resumo:
no.10 (1984)
Resumo:
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non-consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non-native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non-native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non-consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non-native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter-related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non-native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non-native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
Resumo:
v.61(1971)
Resumo:
This is a review of the research undertaken since 1971 on the behavior and physiological ecology of sloths. The animals exhibit numerous fascinating features. Sloth hair is extremely specialized for a wet tropical environment and contains symbiotic algae. Activity shows circadian and seasonal variation. Nutrients derived from the food, particularly in Bradypus, only barely match the requirements for energy expenditure. Sloths are hosts to a fascinating array of commensal and parasitic arthropods and are carriers of various arthropod-borne viruses. Sloths are known reservoirs of the flagellate protozoan which causes leishmaniasis in humans, and may also carry trypanosomes and the protozoan Pneumocystis carinii.
Resumo:
Among the decapod crustaceans, brachyuran crabs or the true crabs occupy a very significant position due to their ecological and economic value. Crabs support a sustenance fishery in India, even though their present status is not comparable to that of shrimps and lobsters. They are of great demand in the domestic market as well as in the foreign markets. In addition to this, brachyuran crabs are of great ecological importance. They form the conspicuous members of the mangrove ecosystems and play a significant role in detritus formation, nutrient recycling and dynamics of the ecosystem. Considering all these factors, crabs are often considered to be the keystone species of the mangrove ecosystem. Though several works have been undertaken on brachyuran crabs world –wide as well as within the country, reports on the brachyuran crabs of Kerala waters are very scanty. Most of the studies done on brachyuran fauna were from the east coast of India and a very few works from the west coast. Among the edible crabs, mud crabs belonging to genus Scylla forms the most important due to their large size and taste. They are being exported on a large scale to the foreign markets like Singapore, Malaysia and Hong Kong. Kerala is the biggest supplier of live mud crabs and Chennai is the major centre of live mud crab export. However, there exists considerable confusion regarding the identification of mud crabs because of the subtle morphological differences between the species.In this context, an extensive study was undertaken on the brachyuran fauna of Cochin Backwaters, Kerala, India, to have a basic knowledge on their diversity, habitat preference and systematics. The study provides an attempt to resolve the confusion pertaining in the species identification of mud crabs belonging to Genus Scylla. Diversity study revealed the occurrence of 23 species of brachyuran crabs belonging to 16 genera and 8 families in the study area Cochin Backwaters. Among the families, the highest number of species was recorded from Family Portunidae .Among the 23 crab species enlisted from the Cochin backwaters, 5 species are of commercial importance and contribute a major share to the crustacean fishery of the Cochin region. It was observed that, the Cochin backwaters are invaded by certain marine migrant species during the Post monsoon and Pre monsoon periods and they are found to disappear with the onset of monsoon. The study reports the occurrence of the ‘herring bow crab’ Varuna litterata in the Cochin backwaters for the first time. Ecological studies showed that the substratum characteristics influence the occurrence, distribution and abundance of crabs in the sampling stations rather than water quality parameters. The variables which affected the crab distribution the most were Salinity, moisture content in the sediment, organic carbon and the sediment texture. Besides the water and sediment quality parameters, the most important factor influencing the distribution of crabs is the presence of mangroves. The study also revealed that most of the crabs encountered from the study area preferred a muddy substratum, with high organic carbon content and high moisture content. In the present study, an identification key is presented for the brachyuran crabs occurring along the study area the Cochin backwaters and the associated mangrove patches, taking into account the morphological characters coupled with the structure of third maxillipeds, first pleopods of males and the shape of male abdomen. Morphological examination indicated the existence of a morphotype which is comparable with the morphological features of S. tranquebarica, the morphometric study and the molecular analyses confirmed the non existence of S. tranquebarica in the Cochin backwaters.