855 resultados para Ecological Speciation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent study of a pair of sympatric species of cichlids in Lake Apoyo in Nicaragua is viewed as providing probably one of the most convincing examples of sympatric speciation to date. Here, we describe and study a stochastic, individual-based, explicit genetic model tailored for this cichlid system. Our results show that relatively rapid (<20,000 generations) colonization of a new ecological niche and (sympatric or parapatric) speciation via local adaptation and divergence in habitat and mating preferences are theoretically plausible if: (i) the number of loci underlying the traits controlling local adaptation, and habitat and mating preferences is small; (ii) the strength of selection for local adaptation is intermediate; (iii) the carrying capacity of the population is intermediate; and (iv) the effects of the loci influencing nonrandom mating are strong. We discuss patterns and timescales of ecological speciation identified by our model, and we highlight important parameters and features that need to be studied empirically to provide information that can be used to improve the biological realism and power of mathematical models of ecological speciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interplay between selection and aspects of the genetic architecture of traits (such as linkage, dominance, and epistasis) can either drive or constrain speciation [1-3]. Despite accumulating evidence that speciation can progress to "intermediate" stages-with populations evolving only partial reproductive isolation-studies describing selective mechanisms that impose constraints on speciation are more rare than those describing drivers. The stick insect Timema cristinae provides an example of a system in which partial reproductive isolation has evolved between populations adapted to different host plant environments, in part due to divergent selection acting on a pattern polymorphism [4, 5]. Here, we demonstrate how selection on a green/melanistic color polymorphism counteracts speciation in this system. Specifically, divergent selection between hosts does not occur on color phenotypes because melanistic T. cristinae are cryptic on the stems of both host species, are resistant to a fungal pathogen, and have a mating advantage. Using genetic crosses and genome-wide association mapping, we quantify the genetic architecture of both the pattern and color polymorphism, illustrating their simple genetic control. We use these empirical results to develop an individual-based model that shows how the melanistic phenotype acts as a "genetic bridge" that increases gene flow between populations living on different hosts. Our results demonstrate how variation in the nature of selection acting on traits, and aspects of trait genetic architecture, can impose constraints on both local adaptation and speciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on speciation and adaptive radiation has flourished during the past decades, yet factors underlying initiation of reproductive isolation often remain unknown. Parasites represent important selective agents and have received renewed attention in speciation research. We review the literature on parasite-mediated divergent selection in context of ecological speciation and present empirical evidence for three nonexclusive mechanisms by which parasites might facilitate speciation: reduced viability or fecundity of immigrants and hybrids, assortative mating as a pleiotropic by-product of host adaptation, and ecologically-based sexual selection. We emphasise the lack of research on speciation continuums, which is why no study has yet made a convincing case for parasite driven divergent evolution to initiate the emergence of reproductive isolation. We also point interest towards selection imposed by single vs. multiple parasite species, conceptually linking this to strength and multifariousness of selection. Moreover, we discuss how parasites, by manipulating behaviour or impairing sensory abilities of hosts, may change the form of selection that underlies speciation. We conclude that future studies should consider host populations at variable stages of the speciation process, and explore recurrent patterns of parasitism and resistance that could pinpoint the role of parasites in imposing the divergent selection that initiates ecological speciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phenotypic differences among closely related populations and species can cause contrasting effects on ecosystems; however, it is unknown whether such effects result from genetic divergence, phenotypic plasticity, or both. To test this, we reared sympatric limnetic and benthic species of whitefish from a young adaptive radiation in a common garden, where the benthic species was raised on two distinct food types. We then used these fish in a mesocosm experiment to test for contrasting ecosystem effects of closely related species and of plastically induced differences within a species. We found that strong contrasting ecosystem effects resulted more frequently from genetic divergence, although they were not stronger overall than those resulting from phenotypic plasticity. Overall, our results provide evidence that genetically based differences among closely related species that evolved during a young adaptive radiation can affect ecosystems, and that phenotypic plasticity can modify the ecosystem effects of such species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically-based divergent selection. Although laboratory and field studies provide evidence that 'ecological speciation' can occur, our understanding of the details of the process is incomplete. Here we review ecological speciation by considering its constituent components: an ecological source of divergent selection, a form of reproductive isolation, and a genetic mechanism linking the two. Sources of divergent selection include differences in environment or niche, certain forms of sexual selection, and the ecological interaction of populations. We explore the evidence for the contribution of each to ecological speciation. Forms of reproductive isolation are diverse and we discuss the likelihood that each may be involved in ecological speciation. Divergent selection on genes affecting ecological traits can be transmitted directly (via pleiotropy) or indirectly (via linkage disequilibrium) to genes causing reproductive isolation and we explore the consequences of both. Along with these components, we also discuss the geography and the genetic basis of ecological speciation. Throughout, we provide examples from nature, critically evaluate their quality, and highlight areas where more work is required.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Within the Coleoptera, the largest order in the animal kingdom, the exclusively herbivorous Chrysomelidae are recognized as one of the most species rich beetle families. The evolutionary processes that have fueled radiation into the more than thirty-five thousand currently recognized leaf beetle species remain partly unresolved. The prominent role of leaf beetles in the insect world, their omnipresence across all terrestrial biomes and their economic importance as common agricultural pest organisms make this family particularly interesting for studying the mechanisms that drive diversification. Here we specifically focus on two ecotypes of the alpine leaf beetle Oreina speciosissima (Scop.), which have been shown to exhibit morphological differences in male genitalia roughly corresponding to the subspecies Oreina speciosissima sensu stricto and Oreina speciosissima troglodytes. In general the two ecotypes segregate along an elevation gradient and by host plants: Oreina speciosissima sensu stricto colonizes high forb vegetation at low altitude and Oreina speciosissima troglodytes is found in stone run vegetation at higher elevations. Both host plants and leaf beetles have a patchy geographical distribution. Through use of gene sequencing and genome fingerprinting (AFLP) we analyzed the genetic structure and habitat use of Oreina speciosissima populations from the Swiss Alps to examine whether the two ecotypes have a genetic basis. By investigating a wide range of altitudes and focusing on the structuring effect of habitat types, we aim to provide answers regarding the factors that drive adaptive radiation in this phytophagous leaf beetle.Results: While little phylogenetic resolution was observed based on the sequencing of four DNA regions, the topology and clustering resulting from AFLP genotyping grouped specimens according to their habitat, mostly defined by plant associations. A few specimens with intermediate morphologies clustered with one of the two ecotypes or formed separate clusters consistent with habitat differences. These results were discussed in an ecological speciation framework.Conclusions: The question of whether this case of ecological differentiation occurred in sympatry or allopatry remains open. Still, the observed pattern points towards ongoing divergence between the two ecotypes which is likely driven by a recent shift in host plant use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There are over 700 species of fig trees in the tropics and several thousand species of fig wasps are associated with their syconia (inflorescences). These wasps comprise a monophyletic family of fig pollinators and several diverse lineages of non-pollinating wasps. The pollinator larvae gall fig flowers, while larvae of non-pollinating species either initiate their own galls or parasitise the galls of other wasps. A single fig species has 1-4 pollinator species and also hosts up to 30 non-pollinating wasp species. Most wasps show a high degree of host plant specificity and are known from only a single fig species. However, in some cases wasps may be shared across closely related fig species. There is impressive morphological coevolution between figs and fig wasps and this, combined with a high degree of partner specificity, led to the expectation that figs and pollinators have cospeciated extensively. Comparison of deep phylogenies supports long-term codivergence of figs and pollinators, but also suggests that some host shifts have occurred. Phylogenies of more closely related species do not match perfectly and may even be incongruent, suggesting significant roles for processes other than strict cospeciation. Combined with recent evidence on host specificity patterns, this suggests that pollinator wasps may often speciate by host shifts between closely related figs, or by duplication (the wasp speciates but the fig doesn't). The frequencies and biological details of these different modes of speciation invite further study. Far less is known about speciation in non-pollinating fig wasps. Some lineages have probably coevolved with figs and pollinators for most of the evolutionary history of the symbiosis, while others appear to be more recent colonisers. Many species appear to be highly host plant specific, but those that lay eggs through the fig wall without entering the syconium (the majority of species) may be subject to fewer constraints on host-shifting than pollinators. There is evidence for substantial host shifting in at least one gens, but also evidence for ecological speciation on the same host plant by niche shifts in other cases. Finally, recent work has begun to address the issue of “community phylogeny” and provided evidence for long-term co-divergence of multiple pollinating and non-pollinating wasp lineages with their host figs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Central European lake whitefish (Coregonus spp.) colonized Swiss lakes following the last glacial retreat and have undergone rapid speciation and adaptive radiation. Up to six species have been shown to coexist in some lakes, and individual species occupy specific ecological niches and have distinct feeding and reproductive ecologies. We studied methylmercury (MeHg) accumulation in sympatric whitefish species from seven Swiss lakes to determine if ecological divergence has led to different rates of MeHg bioaccumulation. In four of seven lakes, sympatric species had distinctly different MeHg levels, which varied by up to a factor of two between species. Generally, species with greater MeHg levels were smaller in body size and planktivorous, and species with lower MeHg were larger and benthivorous. While modest disparities in trophic position between species might be expected a priori to explain the divergence in MeHg, δ15N of bulk tissue did not correlate with fish MeHg in five of seven lakes. Results of a nested ANCOVA analysis across all lakes indicated that only two factors (species, lake) explained substantial portions of the variance, with species accounting for more variance (52 %) than inter-lake differences (32 %). We suggest that differences in MeHg accumulation were likely caused by diverging metabolic traits between species, such as differences in energy partitioning between anabolism and catabolism, potentially interacting with species-specific prey resource utilization. These results indicate substantial variability in MeHg accumulation between closely related fish species, illustrating that ecological speciation in fish can lead to divergent MeHg accumulation patterns.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ecological speciation is the process by which reproductively isolated populations emerge as a consequence of divergent natural or ecologically-mediated sexual selection. Most genomic studies of ecological speciation have investigated allopatric populations, making it difficult to infer reproductive isolation. The few studies on sympatric ecotypes have focused on advanced stages of the speciation process after thousands of generations of divergence. As a consequence, we still do not know what genomic signatures of the early onset of ecological speciation look like. Here, we examined genomic differentiation among migratory lake and resident stream ecotypes of threespine stickleback reproducing in sympatry in one stream, and in parapatry in another stream. Importantly, these ecotypes started diverging less than 150 years ago. We obtained 34,756 SNPs with restriction-site associated DNA sequencing and identified genomic islands of differentiation using a Hidden Markov Model approach. Consistent with incipient ecological speciation, we found significant genomic differentiation between ecotypes both in sympatry and parapatry. Of 19 islands of differentiation resisting gene flow in sympatry, all were also differentiated in parapatry and were thus likely driven by divergent selection among habitats. These islands clustered in quantitative trait loci controlling divergent traits among the ecotypes, many of them concentrated in one region with low to intermediate recombination. Our findings suggest that adaptive genomic differentiation at many genetic loci can arise and persist in sympatry at the very early stage of ecotype divergence, and that the genomic architecture of adaptation may facilitate this.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global biodiversity peaks in the tropical forests of the Andes, a striking geological feature that has likely been instrumental in generating biodiversity by providing opportunities for both vicariant and ecological speciation. However, the role of these mountains in the diversification of insects, which dominate biodiversity, has been poorly explored using phylogenetic methods. Here we study the role of the Andes in the evolution of a diverse Neotropical insect group, the clearwing butterflies. We used dated species-level phylogenies to investigate the time course of speciation and to infer ancestral elevation ranges for two diverse genera. We show that both genera likely originated at middle elevations in the Andes in the Middle Miocene, contrasting with most published results in vertebrates that point to a lowland origin. Although we detected a signature of vicariance caused by the uplift of the Andes at the Miocene-Pliocene boundary, most sister species were parapatric without any obvious vicariant barrier. Combined with an overall decelerating speciation rate, these results suggest an important role for ecological speciation and adaptive radiation, rather than simple vicariance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adaptation and reproductive isolation, the engines of biological diversity, are still elusive when discussing the genetic bases of speciation. Namely, the number of genes and magnitude of selection acting positively or negatively on genomic traits implicated in speciation is contentious. Here, we describe the first steps of an ongoing research program aimed at understanding the genetic bases of population divergence and reproductive isolation in the lake whitefish (Coregonus clupeaformis). A preliminary linkage map originating from a hybrid cross between dwarf and normal ecotypes is presented, whereby some of the segregating AFLP markers were found to be conserved among natural populations. Maximum-likelihood was used to estimate hybrid indices from non-diagnostic markers at 998 AFLP loci. This allowed identification of the most likely candidate loci that have been under the influence of selection during the natural hybridisation of whitefish originating from different glacial races. As some of these loci could be identified on the linkage map, the possibility that selection of traits in natural populations may eventually be correlated to specific chromosomal regions was demonstrated. The future prospects and potential of these approaches to elucidate the genetic bases of adaptation and reproductive isolation among sympatric ecotypes of lake whitefish is discussed.