961 resultados para Ecological Planning
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
In recent years, cities have shown increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change, and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning, human needs are supplied while natural resources are used in the most effective and sustainable manner and ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, this chapter briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, it presents a conceptual framework for a new methodology for developing sustainable urban ecosystems through ecological planning approach.
Resumo:
In recent years, cities have shown increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change, and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning, human needs are supplied while natural resources are used in the most effective and sustainable manner and ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, this chapter briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, it presents a conceptual framework for a new methodology for developing sustainable urban ecosystems through ecological planning approach.
Resumo:
Rapid urbanization has brought environmentally, socially, and economically great challenges to cities and societies. To build a sustainable city, these challenges need to be faced efficiently and successfully. This paper focuses on the environmental issues and investigates the ecological approaches for planning sustainable cities through a comprehensive review of the relevant literature. The review focuses on several differing aspects of sustainable city formation. The paper provides insights on the interaction between the natural environment and human activities by identifying environmental effects resulting from this interaction; provides an introduction to the concept of sustainable urban development by underlining the important role of ecological planning in achieving sustainable cities; introduces the notion of urban ecosystems by establishing principles for the management of their sustainability; describes urban ecosystem sustainability assessment by introducing a review of current assessment methods, and; offers an outline of indexing urban environmental sustainability. The paper concludes with a summary of the findings.
Resumo:
In recent years, cities show increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning human needs are supplied while natural resources are used in the most effective and sustainable manner. And the maintenance of ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, the paper briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, the paper defines the conceptual framework of a new method for developing sustainable urban ecosystems through ecological planning approach. In the future of the research, this model will be developed as a guideline for the assessment of the ecological sustainability in built environments.
Resumo:
Purpose A knowledge-based urban development needs to be sustainable and, therefore, requires ecological planning strategies to ensure a better quality of its services. The purpose of this paper is to present an innovative approach for monitoring the sustainability of urban services and help the policy-making authorities to revise the current planning and development practices for more effective solutions. The paper introduces a new assessment tool–Micro-level Urban-ecosystem Sustainability IndeX (MUSIX) – that provides a quantitative measure of urban sustainability in a local context. Design/methodology/approach A multi-method research approach was employed in the construction of the MUSIX. A qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. A quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. Findings/results MUSIX was tested in a pilot study site and provided information referring to the main environmental impacts arising from rapid urban development and population growth. Related to that, some key ecological planning strategies were recommended to guide the preparation and assessment of development and local area plans. Research limitations/implications This study provided fundamental information that assists developers, planners and policy-makers to investigate the multidimensional nature of sustainability at the local level by capturing the environmental pressures and their driving forces in highly developed urban areas. Originality/value This study measures the sustainability of urban development plans through providing data analysis and interpretation of results in a new spatial data unit.
Resumo:
A city is the most dramatic manifestation of human activities on the environment. This human dominated organism degrades natural habitats, simplifies species composition, disrupts hydrological systems, and modifies energy flow and nutrient cycling. Sustainable urban development is seen as a panacea to minimise these externalities caused by widespread human activities on the environment. The concept of sustainable urban development has been around over a considerably long-time as the need to adopt environmentally sustainable behaviours made the international community commit to it. However, to date such development has not been achieved in large scales anywhere around the globe. This review paper aims to look at the sustainable urban development concept from the lens of planning and development integration to generate new insights and directions. The paper reports the outcome of the review of the literature on planning and development approaches—i.e., urban planning, ecological planning, urban development, sustainable urban development—and proposes a new process to support the efforts for achieving sustainable urban development—i.e., integrated urban planning and development process. The findings of this review paper highlights that adopting such holistic planning and development process generate a potential to further support the progress towards achieving sustainability agendas of our cities.
Resumo:
In recent years coastal resource management has begun to stand as its own discipline. Its multidisciplinary nature gives it access to theory situated in each of the diverse fields which it may encompass, yet management practices often revert to the primary field of the manager. There is a lack of a common set of “coastal” theory from which managers can draw. Seven resource-related issues with which coastal area managers must contend include: coastal habitat conservation, traditional maritime communities and economies, strong development and use pressures, adaptation to sea level rise and climate change, landscape sustainability and resilience, coastal hazards, and emerging energy technologies. The complexity and range of human and environmental interactions at the coast suggest a strong need for a common body of coastal management theory which managers would do well to understand generally. Planning theory, which itself is a synthesis of concepts from multiple fields, contains ideas generally valuable to coastal management. Planning theory can not only provide an example of how to develop a multi- or transdisciplinary set of theory, but may also provide actual theoretical foundation for a coastal theory. In particular we discuss five concepts in the planning theory discourse and present their utility for coastal resource managers. These include “wicked” problems, ecological planning, the epistemology of knowledge communities, the role of the planner/ manager, and collaborative planning. While these theories are known and familiar to some professionals working at the coast, we argue that there is a need for broader understanding amongst the various specialists working in the increasingly identifiable field of coastal resource management. (PDF contains 4 pages)
An indexing model for sustainable urban environmental management : the case of Gold Coast, Australia
Resumo:
Improving urban ecosystems and the quality of life of citizens have become a central issue in the global effort of creating sustainable built environments. As human beings our lives completely depend on the sustainability of the nature and we need to protect and manage natural resources in a more sustainable way in order to sustain our existence. As a result of population growth and rapid urbanisation, increasing demand of productivity depletes and degrades natural resources. However, the increasing activities and rapid development require more resources, and therefore, ecological planning becomes an essential vehicle in preserving scarce natural resources. This paper aims to indentify the interation between urban ecosystems and human activities in the context of urban sustainability and explores the degrading environmental impacts of this interaction and the necessity and benefits of using sustainability indicators as a tool in sustainable urban evnironmental management. Additionally, the paper also introduces an environmental sustainability indexing model (ASSURE) as an innovative approach to evaluate the environmental conditions of built environment.
Resumo:
During the last several decades, the quality of natural resources and their services have been exposed to significant degradation from increased urban populations combined with the sprawl of settlements, development of transportation networks and industrial activities (Dorsey, 2003; Pauleit et al., 2005). As a result of this environmental degradation, a sustainable framework for urban development is required to provide the resilience of natural resources and ecosystems. Sustainable urban development refers to the management of cities with adequate infrastructure to support the needs of its population for the present and future generations as well as maintain the sustainability of its ecosystems (UNEP/IETC, 2002; Yigitcanlar, 2010). One of the important strategic approaches for planning sustainable cities is „ecological planning‟. Ecological planning is a multi-dimensional concept that aims to preserve biodiversity richness and ecosystem productivity through the sustainable management of natural resources (Barnes et al., 2005). As stated by Baldwin (1985, p.4), ecological planning is the initiation and operation of activities to direct and control the acquisition, transformation, disruption and disposal of resources in a manner capable of sustaining human activities with a minimum disruption of ecosystem processes. Therefore, ecological planning is a powerful method for creating sustainable urban ecosystems. In order to explore the city as an ecosystem and investigate the interaction between the urban ecosystem and human activities, a holistic urban ecosystem sustainability assessment approach is required. Urban ecosystem sustainability assessment serves as a tool that helps policy and decision-makers in improving their actions towards sustainable urban development. There are several methods used in urban ecosystem sustainability assessment among which sustainability indicators and composite indices are the most commonly used tools for assessing the progress towards sustainable land use and urban management. Currently, a variety of composite indices are available to measure the sustainability at the local, national and international levels. However, the main conclusion drawn from the literature review is that they are too broad to be applied to assess local and micro level sustainability and no benchmark value for most of the indicators exists due to limited data availability and non-comparable data across countries. Mayer (2008, p. 280) advocates that by stating "as different as the indices may seem, many of them incorporate the same underlying data because of the small number of available sustainability datasets". Mori and Christodoulou (2011) also argue that this relative evaluation and comparison brings along biased assessments, as data only exists for some entities, which also means excluding many nations from evaluation and comparison. Thus, there is a need for developing an accurate and comprehensive micro-level urban ecosystem sustainability assessment method. In order to develop such a model, it is practical to adopt an approach that uses a method to utilise indicators for collecting data, designate certain threshold values or ranges, perform a comparative sustainability assessment via indices at the micro-level, and aggregate these assessment findings to the local level. Hereby, through this approach and model, it is possible to produce sufficient and reliable data to enable comparison at the local level, and provide useful results to inform the local planning, conservation and development decision-making process to secure sustainable ecosystems and urban futures. To advance research in this area, this study investigated the environmental impacts of an existing urban context by using a composite index with an aim to identify the interaction between urban ecosystems and human activities in the context of environmental sustainability. In this respect, this study developed a new comprehensive urban ecosystem sustainability assessment tool entitled the „Micro-level Urban-ecosystem Sustainability IndeX‟ (MUSIX). The MUSIX model is an indicator-based indexing model that investigates the factors affecting urban sustainability in a local context. The model outputs provide local and micro-level sustainability reporting guidance to help policy-making concerning environmental issues. A multi-method research approach, which is based on both quantitative analysis and qualitative analysis, was employed in the construction of the MUSIX model. First, a qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. Afterwards, a quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. The MUSIX model was tested in four pilot study sites selected from the Gold Coast City, Queensland, Australia. The model results detected the sustainability performance of current urban settings referring to six main issues of urban development: (1) hydrology, (2) ecology, (3) pollution, (4) location, (5) design, and; (6) efficiency. For each category, a set of core indicators was assigned which are intended to: (1) benchmark the current situation, strengths and weaknesses, (2) evaluate the efficiency of implemented plans, and; (3) measure the progress towards sustainable development. While the indicator set of the model provided specific information about the environmental impacts in the area at the parcel scale, the composite index score provided general information about the sustainability of the area at the neighbourhood scale. Finally, in light of the model findings, integrated ecological planning strategies were developed to guide the preparation and assessment of development and local area plans in conjunction with the Gold Coast Planning Scheme, which establishes regulatory provisions to achieve ecological sustainability through the formulation of place codes, development codes, constraint codes and other assessment criteria that provide guidance for best practice development solutions. These relevant strategies can be summarised as follows: • Establishing hydrological conservation through sustainable stormwater management in order to preserve the Earth’s water cycle and aquatic ecosystems; • Providing ecological conservation through sustainable ecosystem management in order to protect biological diversity and maintain the integrity of natural ecosystems; • Improving environmental quality through developing pollution prevention regulations and policies in order to promote high quality water resources, clean air and enhanced ecosystem health; • Creating sustainable mobility and accessibility through designing better local services and walkable neighbourhoods in order to promote safe environments and healthy communities; • Sustainable design of urban environment through climate responsive design in order to increase the efficient use of solar energy to provide thermal comfort, and; • Use of renewable resources through creating efficient communities in order to provide long-term management of natural resources for the sustainability of future generations.
Resumo:
This paper reviews a wide range of literature on environmental management in the field in Queensland, and analyzes this by period and by author. An episodic pattern of activities since European settlement is evident. Periods of exploration (pre-1950) and inventory- compilation (ca. 1950-1970) were followed by two decades of media and non-government organization campaigning (ca. 1970-1990), then an era dominated by government regulatory action (ca. 1990-2010). These eras dominated public perception of what was happening in environmental practice. They were delineated by historic ‘interventions’ (summarily, the end of World War II, the 1971 inflationary crisis, and computerization respectively).
Resumo:
避暑山庄是现存我国最大的皇家园林。由于种种原因,避暑山庄植被从建庄至今,发生了很大的变化,原始植被破坏殆尽,仅留下少数古树,现状植被多为五十年代大搞绿化时所植,植物配冤出现了与这一历史名园不相协调的矛盾;近几十年来旅游及城市的发展对避暑山庄植被有一定的冲击,要求有相应的对策。 我有从生态学的观点出发,首先对避暑山庄的历史及现状植被进行了研究,然后研究了旅游与城市化对避暑山庄植被的影响,最后,对避暑山庄不同游览区的生境优劣(土壤肥力及小气侯因子)及环境污染(S、Pb)的现状进行了观测与分析。根据上述研究,我们进进了避暑山庄植被生态规划。结果如下: 1、避暑山庄盛期的主要植被是以油松、栎类为主的针(阔)叶林或混交林,尚有以白榆、国槐、旱柳、元宝械等组成的混合林等10个植物群落。 2、避暑山庄现状植被可划分为14个植物群落,以油松群落面积最大。 3、旅游及城市化对避暑山庄植被的影响,主要表现在对土壤的影响及对植被的直接影响,主要方式有机械破坏及造成的环境污染的危害等,这些影响与避暑山庄古松死亡(26.5棵/年)有很大关系。 4、山庄各游览区环境污染的大小顺序是:宫殿区>湖洲区>平原区>山峦区。其中避暑山庄S污染严重是北京北京植物园的2.1倍。 5、避暑山庄各游览区生境优劣:山峦区优予胡洲区,湖洲区优于平原区,平原区优于宫殿区;在山峦区,沟谷优于阴坡,阴坡优于阳坡。 6、避暑山庄湖水出现了富营养化污染,总N及总P含量超过国家标准3倍多。 7、基于上述分析,提出了以旅游为主的避暑山庄植被生态规划原则,根据这一原则,规划出11个植物群落。 8、共编绘了1:10000的避署山庄历史、现状及规划植被图3幅。
Resumo:
北京市郊区可持续景观生态规划及优化生态生产范式研究是指要遵循区域自然地理要素的分异规律,以土地利用现状格局为基础,以景观生态学原理和可持续发展准则为理论指导,以景观空间分析为具体研究内容来揭示区域土地利用类型结构、功能的异质性和有序性,以期提出优化的土地利用格局。本论文主要通过大量数据、图件的收集、野外考察与调查,文献查阅与数据处理、分析,得出以下主要结论: 一、理论方面 基于景观生态学理论——景观要素,空间结构与生态学过程,景观动态,异质性,等级结构,连接度以及景观的时空性等,以北京地区为例阐述了景观生态学理论如何合理地整合于生态建设与保育之中,并重点阐释了北京生态建设与保育“小三圈”格局的结构与功能,该系统包括山区外圈层、郊区平原中圈层和城区内圈层,其目标要实现:(1)山区发挥以水源涵养、水土保持防护为主的生态功能;(2)郊区创建农田、林地、草地异质性的人工稀树草原景观,形成带、网、片、点相结合的绿网系统;(3)城区以自身绿化和美化为主。同时,本研究针对我国的区域可持续发展进一步提出更加有效的建设性意见:(1)开展区域生态适宜性评价;(2)区域水平的土地利用格局、动态以及预测性研究;(3)进行区域可持续景观生态规划,建立区域优化生态生产范式,最终实现可持续发展目标。 二、研究方法方面 利用空间自相关指数,并结合“城-郊-乡”梯度分析法研究景观格局对尺度(包括粒度、幅度、方向)变化的响应。得出以下主要结论: 1、景观格局对于尺度变化有着不同的响应,随着空间粒度的增加,空间自相关均呈下降趋势;随着幅度的增加,空间自相关基本不变;人类干扰较多的景观几乎不受“划区效应”的影响;不同的数据类型,同一数据类型的不同景观对于尺度的变化均有着不同的响应。 2、沿“城-郊-乡”样带,空间自相关呈阶梯状增加趋势。景观空间自相关大小顺序:林牧景观>林果景观>农田景观>都市景观>都市化景观,人为干扰较多的景观具有较低的空间自相关,但对尺度的变化表现出较强的敏感性。 三、实例研究 北京市郊区可持续景观生态规划及优化生态生产范式研究是以昌平区为例,从昌平区经济与产业结构现状分析出发、以昌平区土壤理化性状分析为背景,以景观格局现状、动态,以及土地利用内部转移格局与过程、驱动因素分析为主要内容,并且重点探讨了昌平区城镇化的过程特征及空间特征,得出以下主要结论: 1、昌平区GDP配比方式,以及昌平区农村GDP结构模式均为“三二一”。昌平区在北京市农业中的地位,以及农业在昌平区GDP中所处地位均弱化。截止2001年,昌平区农业产值中,牧业>种植业>渔业>林业,牧业居于首位,占到46.70%,而传统种植业也正以小汤山为龙头向现代化、高科技、高效化的“六种农业”转化。总体讲,农业的粮食生产功能在昌平区已不再是一个重要功能,传统种植业正逐步地让位于畜牧业(人工牧草)、林业(疏林、苗圃),突出体现了具有良好生态学效益的牧草、林果在未来大农业发展中的战略地位。 2、昌平土壤肥力状况良好,景观分区与土壤理化性质是吻合的。基于土壤理化基质,昌平区应形成林、灌、草为主的山区景观,园林式城镇、林、果、灌相结合的山前倾斜平原景观,以及农、林、草配置的生态农业景观和花卉、种苗、绿化带相辉映的绿色生态住宅景观。 3、从1989~2001年期间,研究区内土地利用景观经历了很大的变化。土地利用景观的量变主要体现在城镇用地的迅速扩张和耕地的锐减,而土地利用类型的变化则体现在水田、传统菜地的逐渐消失,以及2001年后人工牧草的大面积推广种植。景观格局在不同景观分区的差异也得以论证,中北部山麓平原卫星城镇、旅游林果区(III)具有最高的多样性和最低的优势度、聚集度,中南部平原高科技、都市生态农业区(II)的多样性最低,而优势度、聚集度最高,对于南部平原都市边缘、城镇住宅区(I)各指标则介于III和II区之间。 4、从1989~2001年期间,土地利用的内部转移主要体现在耕地向城镇用地的大面积转移,其次,传统菜地转向城镇用地和其他种植耕地,而人工牧草是由部分耕地转移而来的。城镇化、水资源短缺和农业政策是主要驱动因素。土地利用的内部转移具有明显的区域差异,中北部山麓平原卫星城、旅游林果区体现出卫星城镇的发展,南部平原都市边缘住宅区则反映出北京都市边缘的向外扩张,而中南部平原高科技都市农业区则正向现代化的、高科技都市农业示范区发展。 5、昌平区三种主要的城镇化模式,即都市边缘带状城镇扩展模式、交通主轴线状城镇扩展模式和卫星城面状城镇扩展模式。研究表明,昌平区的城镇化主要集中在1989~1996年期间。 基于昌平区的产业与经济结构现状,土壤养分状况,景观结构现状、动态,土地利用转移方向,并且结合昌平区自然地理分异规律,社会经济因素对昌平区进行了可持续景观规划,昌平区应遵循的四个景观分区为:北部中低山生态保护、生态旅游区;中北部山麓平原卫星城镇、旅游林果区;中南部平原高科技、都市生态农业区;南部平原都市边缘、城镇住宅区。 最后作为总结、归纳,我们提出昌平区优化生态生产范式,昌平区的发展应定位于(1)生态环境保护与水源涵养的生态功能;(2)教育、示范、创新功能;(3)生活功能,并且遵循自然地域分异规律原则、因地制宜原则、生态主导性原则、统筹兼顾原则,大力发展昌平区经济的优势产业,即畜牧业、林果业和旅游业,突出肉羊、苹果、牧草和林木种苗等四个具有昌平特色的主导产业。 景观生态学;景观空间格局;可持续景观生态规划;土地利用变化;优化生态生产范式;北京昌平区
Resumo:
空间生态规划着重于研究城乡土地和空间资源,达到城乡土地和空间资源合理配置。辽宁本溪市南芬区属山地资源型工矿城镇,由于空间用地类型配置不合理,中心城区环境污染严重,而广阔的乡村空间资源未尽其用。为此,有必要对南芬全区城乡空间进行生态规划。本文在理论上补充空间生态规划中生态适宜性评价理论,在方法上提出了基于适宜性评价的空间生态规划方法后,就南芬主要用地类型工业用地、居住用地、作物用地和林业用地分别进行生态适宜性评价和用地配置研究,并综合适宜性评价结果和探讨了南芬空间生态分区及空间生态规划途径。 主要结果为:(1) 工业用地最适宜区、次适宜、勉强适宜和不适宜区面积分别为91.23km2、182.72km2、182.08km2和162.97km2;居住用地分别为208.08km2、169.95km2、149.51km2和91.46km2;作物用地分别为124.23km2、130.65km2、159.02km2和205.1km2;林业用地分别为201.7km2、150.43km2、130.21km2和136.66km2。(2) 工业用地现状位于最适宜区、次适宜区、勉强适宜区、不适宜区的面积分别为9.81km2、10.66km2、6.54km2和11.73km2;居住用地分别为9.05 km2、12.57km2、15.7km2和11.53km2;作物用地分别为16.61km2、7.88km2、22.25km2和24.15km2;林业用地分别为193.91km2、104.88km2、81.74km2和67.27km2。(3)综合评价表明,工业用地、居住用地、作物用地、林业用地适宜区面积分别为46.75km2;71.32km2;94.46km2;406.47km2。南芬生态空间区划为生态保护区、生态居住区(2个)和生态工业区(3个)。(4) 最后详细阐述了南芬城乡空间生态规划途径及其内涵,即:生态优先、整体优化、经济优效和社会持续。
Resumo:
Man's inadvertent interference with the environment by way of indiscreL¢ industrflflization has led to the deteriorating air quality in the recent times. The search is on to find the remedies to confine the air pollution levels with in their thershold limits. Theoretical studies play A crucial role in the control and for abatment of air pollution. Improper siting of industry is one of the most common reasons for the increased levels of air pollution in urban environments. A proper and effective ecological planning is an essential first step for any region in order to reduce the effects of air pollution. By means of theoretical models one can obtain the pollutant distribution in any urban area, provided the necessary data are available with the help of which the sites for new industries could be suggested, given the emission inventory. Studies on air pollution meteorology serve and aid the planners to initate remedial actions to bring down the levels of pollution and also to out—line the control strategy. In the present thesis some theoretical studies on air pollution meteorology over South India are made. The thesis is divided into six chapters