994 resultados para Eastern Tibetan Plateau
Resumo:
We measured ecosystem CO2 fluxes for an alpine shrubland on the north-eastern Tibetan Plateau, Qinghai, China. The study is to understand (1) the seasonal variation of CO2 flux and (2) how environmental factors affect the seasonality of CO2 exchange in the alpine ecosystem. Daytime ecosystem respiration was extrapolated from the relationship between temperature and nighttime CO2 fluxes under high turbulent conditions.Seasonal patterns of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange followed highly the seasonal change of aboveground biomass in the alpine shrubland. The net ecosystem CO2 exchange was mainly controlled by the variation of photosynthetic photon flux density, while the ecosystem respiration was closely correlated to the soil temperature at 5-cm depth. Integrated values of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange for the period from November 1, 2002 to October 31 2003 were estimated to be 1418, 1155 and 222 g CO2 m(-2) yr(-1), respectively.
Resumo:
The photosynthetic pathway of plant species collected at Menyuan, Henan, and Maduo sites, east of Tibetan Plateau, China, during the growing season were studied using stable carbon isotopes in leaves. The 232 samples leaves analyzed belonged to 161 species, 30 families, and 94 genera. The delta(13)C values (from -24.6 to -29.2 %o) indicated that all the considered species had a photosynthetic C-3 pathway. The absence of plant species with C-4 photosynthetic pathway might be due to the extremely low air temperature characterizing the Tibetan Plateau. The average delta(13)C value was significantly (p < 0.05) different between annuals and perennials at the three considered study sites. Hence the longer-lived species had greater water-use efficiency (WUE) than shorter-lived species, that is, longer-lived species are better adapted to the extreme environmental conditions of the Tibetan Plateau.
Resumo:
We investigated the independent and combined effects of experimental warming and grazing on plant species diversity on the north-eastern Tibetan Plateau, a region highly vulnerable to ongoing climate and land use changes. Experimental warming caused a 26-36% decrease in species richness, a response that was generally dampened by experimental grazing. Higher species losses occurred at the drier sites where N was less available. Moreover, we observed an indirect effect of climate change on species richness as mediated by plant-plant interactions. Heat stress and warming-induced litter accumulation are potential explanations for the species' responses to experimental warming. This is the first reported experimental evidence that climate warming could cause dramatic declines in plant species diversity in high elevation ecosystems over short time frames and supports model predictions of species losses with anthropogenic climate change.
Resumo:
1 A set of 316 modern surface pollen samples, sampling all the alpine vegetation types that occur on the Tibetan Plateau, has been compiled and analysed. Between 82 and 92% of the pollen present in these samples is derived from only 28 major taxa. These 28 taxa include examples of both tree (AP) and herb (NAP) pollen types. 2 Most of the modern surface pollen samples accurately reflect the composition of the modern vegetation in the sampling region. However, airborne dust-trap pollen samples do not provide a reliable assessment of the modern vegetation. Dust-trap samples contain much higher percentages of tree pollen than non-dust-trap samples, and many of the taxa present are exotic. In the extremely windy environments of the Tibetan Plateau, contamination of dust-trap samples by long-distance transport of exotic pollen is a serious problem. 3 The most characteristic vegetation types present on the Tibetan Plateau are alpine meadows, steppe and desert. Non-arboreal pollen (NAP) therefore dominates the pollen samples in most regions. Percentages of arboreal pollen (AP) are high in samples from the southern and eastern Tibetan Plateau, where alpine forests are an important component of the vegetation. The relative importance of forest and non-forest vegetation across the Plateau clearly follows climatic gradients: forests occur on the southern and eastern margins of the Plateau, supported by the penetration of moisture-bearing airmasses associated with the Indian and Pacific summer monsoons; open, treeless vegetation is dominant in the interior and northern margins of the Plateau, far from these moisture sources. 4 The different types of non-forest vegetation are characterized by different modern pollen assemblages. Thus, alpine deserts are characterized by high percentages of Chenopodiaceae and Artemisia, with Ephedra and Nitraria. Alpine meadows are characterized by high percentages of Cyperaceae and Artemisia, with Ranunculaceae and Polygonaceae. Alpine steppe is characterized by high abundances of Artemisia, with Compositae, Cruciferae and Chenopodiaceae. Although Artemisia is a common component of all non-forest vegetation types on the Tibetan Plateau, the presence of other taxa makes it possible to discriminate between the different vegetation types. 5 The good agreement between modern vegetation and modern surface pollen samples across the Tibetan Plateau provides a measure of the reliability of using pollen data to reconstruct past vegetation patterns in non-forested areas.
Soil enzyme activity changes in different-aged spruce forests of the eastern Qinghai-Tibetan plateau