1000 resultados para Eastern Basin
Resumo:
In 2008, the Oceanography Center at the University of Cyprus acquired two underwater gliders in the framework of a nationally-managed infrastructure upgrade program. The gliders were purchased from the Seaglider Fabrication Center at the University of Washington. Both gliders are rated to 1000 m and carry a typical sensor payload: non-pumped conductivity-temperature-depth sensors (CTD), a dissolved oxygen sensor, an optical triplet to measure optical backscatter at 400 nm, 700 nm, and chlorophyll-a fluorescence. Since March of 2009, the gliders have been used in a long-term observing program of the Cypriot EEZ, and by September 2015, have covered more than 15300 km over ground and 3500 dive cycles in 940 glider days. Butterfly patterns have been flown in two configurations, either on the western or eastern side of the EEZ south of Cyprus. The glider endurance lines criss-cross the region in order to more accurately locate and investigate the mesoscale structures south of Cyprus, and in particular the Cyprus eddy which is often the dominant feature. Based on the near real time observations, the glider mission was sometimes altered in order to more fully sample the Cyprus eddy, or to locate its center or extent. A summary of the raw and processed data collected, and the quality control procedures are presented, in order for future users to take advantage of this unique data set.
Resumo:
Mode of access: Internet.
Resumo:
Predictive models of species distributions are important tools for fisheries management. Unfortunately, these predictive models can be difficult to perform on large waterbodies where fish are difficult to detect and exhaustive sampling is not possible. In recent years the development of Geographic Information Systems (GIS) and new occupancy modelling techniques has improved our ability to predict distributions across landscapes as well as account for imperfect detection. I surveyed the nearshore fish community at 105 sites between Kingston, Ontario and Rockport, Ontario with the objective of modelling geographic and environmental characteristics associated with littoral fish distributions. Occupancy modelling was performed on Round Goby, Yellow perch, and Lepomis spp. Modelling with geographic and environmental covariates revealed the effect of shoreline exposure on nearshore habitat characteristics and the occupancy of Round Goby. Yellow Perch, and Lepomis spp. occupancy was most strongly associated negatively with distance to a wetland. These results are consistent with past research on large lake systems indicate the importance of wetlands and shoreline exposure in determining the fish community of the littoral zone. By examining 3 species with varying rates of occupancy and detection, this study was also able to demonstrate the variable utility of occupancy modelling.
Resumo:
This work is conducted to study the geological and petrophysical features of the Trenton- Black River limestone formation. Log curves, crossplots and mineral identification methods using well-log data are used to determine the components and analyze changes in lithology. Thirty-five wells from the Michigan Basin are used to define the mineralogy of Trenton-Black River limestone. Using the different responses of a few log curves, especially gamma-ray, resistivity and neutron porosity, the formation tops for the Utica shale, the Trenton limestone, the Black River limestone and the Prairie du Chien sandstone are identified to confirm earlier authors’ work and provide a basis for my further work. From these, an isopach map showing the thickness of Trenton-Black River formation is created, indicating that its maximum thickness lies in the eastern basin and decreases gradually to the west. In order to obtain more detailed lithological information about the limestone formations at the thirty-five wells, (a) neutron-density and neutron-sonic crossplots, (b) mineral identification methods, including the M-N plot, MID plot, ϱmaa vs. Umaa MID plot, and the PEF plot, and (c) a modified mineral identification technique are applied to these wells. From this, compositions of the Trenton-Black River formation can be divided into three different rock types: pure limestone, partially dolomitized limestone, and shaly limestone. Maps showing the fraction of dolomite and shale indicate their geographic distribution, with dolomite present more in the western and southwestern basin, and shale more common in the north-central basin. Mineral identification is an independent check on the distribution found from other authors, who found similar distributions based on core descriptions. The Thomas Stieber method of analysis is best suited to sand-shale sequences, interpreting hree different distributions of shale within sand, including dispersed, laminated and structural. Since this method is commonly applied in clastic rocks, my work using the Thomas Stieber method is new, as an attempt to apply this technique, developed for clastics, to carbonate rocks. Based on the original assumption and equations with a corresponding change to the Trenton-Black River formation, feasibility of using the Thomas Stieber method in carbonates is tested. A graphical display of gamma-ray versus density porosity, using the properties of clean carbonate and pure shale, suggests the presence of laminated shale in fourteen wells in this study. Combined with Wilson’s study (2001), it is safe to conclude that when shale occurs in the Trenton-Black River formation, it tends to be laminated shale.
Resumo:
Research on sediments recovered during Ocean Drilling Leg 160 has concentrated on two issues: the first concerned the stratigraphy of sapropel formation, the second was oriented to clarify specific processes that explain sapropel origin. Progress has been made in the construction of stratigraphic composites out of sedimentary sequences from individual holes at each of the palaeoceanographic sites. On the composites, initial work has resulted in the establishment of high-resolution and intermediate-resolution stratigraphies for three sites (963, 964, 967); correlation of sedimentary cycles to astronomical (insolation) cycles extends the stratigraphies to Sites 969 and 966. The sapropel occurrences in the marine and land sequences over the entire Eastern Mediterranean are correlated; with the resolution that can be obtained from isotope studies, groups of sapropels occurred simultaneously over the entire basin. In detail, however, the temporal and facies patterns of sapropel sequences differ between individual sites and depositional basins. The differences may be related to effects of water depth, diagenesis, and post-depositional tectonic attenuation of sequences. Studies on the geochemistry and facies of sapropels agree that anoxic conditions favoured preservation of organic matter in sapropels, caused the enrichment of trace metals associated with sapropels, and helped to preserve primary sedimentary structures. Besides, all evidence is consistent with elevated fluxes of organic matter and associated elements during sapropel events.
Resumo:
During the late Pleistocene, sapropels (layers of organic-carbon rich sediment) formed throughout the entire Eastern Mediterranean Basin in close association with glacial/interglacial transitions. The current theory for the mechanism of sapropel formation involves a density stratification of the water column, due to the invasion of a large quantity of low-saline water, which resulted in oxygen depletion of the bottom waters. Most workers believe that this low-salinity water was glacial meltwater that entered the Mediterranean via the Black Sea and a series of interconnected glacial lakes, but the suggestion also has been made that the freshwater originated from the Nile River. In this study the oxygen isotope values of planktonic foraminifera,Globigerinoides ruber, have been examined in six gravity cores and one piston core from the southern Levantine Basin, and compared with the oxygen isotope records ofG. ruber from other areas of the Eastern Mediterranean. This study deals mainly with the latest sapropel which was deposited approximately 7000 to 9000 years ago. Results indicate that Nile discharge probably does reduce salinities somewhat in the immediate area surrounding the mouth of the Nile, but this water is rapidly mixed with the highly saline waters of the easternmost Mediterranean. Using a mixing equation and surface water salinity limitations, an approximate oxygen isotope balance of surface waters was calculated for the time of latest sapropel deposition. This calculation shows that neither Nile River discharge nor Black Sea input (nor both together) are large enough to account for the large-scale oxygen isotope depletion associated with latest sapropel deposition in the Eastern Mediterranean. This suggests that part of the isotopic change at Termination I is probably due to increased surface water salinities during the last glacial maximum. In addition, evidence from the timing of sapropel 1 deposition and the dissolved oxygen balance indicates that deposition of the latest sapropel is associated with increased surface water production of biogenic material, as much as three times higher than that of present day.
(Table 2) Sm-Nd isotope record for Pacific and eastern Mediterranean foraminifera and bulk sediments
Resumo:
In order to characterize the provenance of lithogenic surface sediments from the Eastern Mediterranean Sea (EMS), residual (leached) fraction of 34 surface samples have been analysed for their 143Nd/144Nd and 87Sr/86Sr isotope ratios. The sample locations bracket all important entrances of riverine suspended matter into the EMS as well as all sub-basins of the EMS. The combined analyses of these two isotope ratios provide a precise characterization of the lithogenic fraction of surface sediments and record their dilution towards the central sub-basins. We reconstruct provenance and possible pathways of riverine dispersal and current redistribution, assuming more or less homogenous isotopic signatures and flux rates of the eolian fraction over the EMS. Lithogenic sediments entering the Ionian Sea from the Calabrian Arc and the Adriatic Sea are characterized by high 87Sr/86Sr isotope ratios and low epsilon-Nd(0) values (average 87Sr/86Sr=0.718005 and epsilon-Nd(0)=-11.06, n=5). Aegean Sea terrigenous sediments show an average ratio of 87Sr/86Sr=0.713089 (n=5) and values of epsilon-Nd(0)=-7.89 (n=5). The Aegean isotopic signature is traceable up to the southwest, south, and southeast of Crete. The sediment loads entering the EMS via the Aegean Sea are low and spread out mainly through the Strait of Casos (east of Crete). Surface sediments from the eastern Levantine Basin are marked by the highest epsilon-Nd(0) values (-3.3, n=6) and lowest 87Sr/86Sr isotope ratios (average 0.709541, n=6), reflecting the predominant input of the Nile sediment. The influence of the Nile sediment is traceable up to the NE-trending, eastern flank of the Mediterranean Ridge. The characterization of the modern riverine dispersal and eolian flux, based on isotope data, may serve as a tool to reconstruct climate-coupled variations of lithogenic sediment input into the EMS.