828 resultados para East Orange


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 5, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 5 of 6 total images of the six sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the historic paper map entitled: New York City and vicinity, H.M. Wilson, geographer in charge ; triangulation by U.S. Coast and Geodetic Survey ; topography by S.H. Bodfish ... [et al. and] U.S. Coast and Geodetic Survey, N.Y. City Government and the Geological Survey of New Jersey. It was published by U.S.G.S. in 1899. Scale 1:62,500. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, cities and towns, villages, forts, cemeteries, aqueducts, boundaries, and more. Relief is shown with standard contour intervals of 20 feet. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Paterson, N.J.-N.Y., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Hackensack, Paterson, Orange, and Weehawken 1955 7.5 minute quadrangles. The Orange quadrangle was previously compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 287 (1954), 745 (1956), and 746 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Staten Island, N.Y.-N.J., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Jersey City, Elizabeth, Arthur Kill, and The Narrows, 1955 7.5 minute quadrangles. Hydrography compiled from USC&GS charts 285 (1955), 286 (1954), 287 (1954), 745 (1956), 369 (1956), 540 (1954), 541 (1955) and 745 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nutritional composition o f orange roughy (collected from the Northeast Atlantic near the Rockall Trough) was studied on a seasonal basis. In addition samples were aged and stability assessed. Protein levels (16.68-16.21% w/w) were found to be slightly higher than those recorded for the N ew Zealand species o f orange roughy and compared favourably with protein values for fish muscle in general. Statistically results show a significant seasonal variation with no variation from fish to fish or in the location within the fish. Lipid content (3.6-4.5% w/w) was found to be much lower than that recorded for New Zealand. As with protein statistically results show a significant seasonal variation and no variation from fish to fish or in the location within the fish. Moisture levels (77.3_79.6%w/w) compared favourably with values obtained from other studies. Again statistically results show a significant seasonal variation with no variation from fish to fish or within the fish. Iodine values (74.63-79.54) indicate the likely presence o f a high level o f mono unsaturated fatty acids. Statistically results show no significant seasonal variation and no sample variation or variation within fish. Thin layer chromatography o f the extracted fat showed the major type to be wax esters with a much lower amount o f triglycerides and smaller amounts of polar lipids, free sterols and free fatty acids. Total fatty acid composition was found to be very similar to that recorded from other studies and showed that most o f the oils extracted from the fish muscle contained a high percentage o f mono unsaturates namely 16:1,18:1, 20:1 and 22:1 (85.63 - 91.14% ) with 16:1 present in the smallest amounts and 18:1 the major one. The only saturated fatty M.Sc. in Biochemistry III Nutritional Composition, Quality and Spoilage Capacity of Specific Deep Sea Fish acids present in significant quantities were 14:0, 16:0 and 18:0, the total varied from a seasonal average high o f 4.05 % to an average low o f 2.27%. The polyunsaturated fatty acids linoleic and arachidonic acid were present in small quantities varying in total from 0.89% to 1.50%. Docosapentaenoic acid (D P A ) was found only in trace quantities in spring, autumn and winter samples and undetected in summer. Levels o f Eicosapentaenoic acid (EPA ) and Docosahexaenoic acid (D H A ) were also found in very low percentages and varied on a seasonal basis with average values ranging from 0.41% in summer to 1.03 % in autumn for EPA and from 1.44 % in summer to3.20 % in autumn for D H A . Again statistically results show a significant seasonal variation with no variation from fish to fish or location within the fish. Levels o f freshness were measured using the Thiobarbituric acid (T B A ), Total volatile base nitrogen (T V B -N ) and Trimethylamine (T M A ) techniques. The quality o f the fish upon arrival was excellent and well below legal/acceptable lim its.T V B -N values ranged from 6.88-8.91 mg/lOOg and T M A values from 4.82-6.46 mg/lOOg Values for T B A ranged from 0.18-0.35 mg Malonaldehyde/kg fish. The summer values were higher than the other seasons. Seasonal variation was significant for all methods with no variation from fish to fish or within the fish. Fish aged at +4°C in air did not exceed the T V B N lim it o f 35mg/100g until day 6 whereas the T V B N lim it was extended to 8 days for fish aged at +4°C in vacuum. However the T M A lim it o f 12mg/100g was reached on day 4 for fish stored at +4°C in air and on day 5 for vacuum packed samples stored at +4°C . Fish stored at -5°C in air and vacuum packed did not reach the T V B N lim it until day 61 but the T M A limit was reached on day 24 for fish stored at -5°C in air and was extended to 31 days for vacuum packed fish stored at-5°C. Prolonged storage at -18°C caused some deterioration o f the frozen fish muscle. Upon thawing the shelf life o f fish stored for 12 months was much shorter than that stored for 6 M.Sc. in Biochemistry IV Nutritional Composition, Quality and Spoilage Capacity of Specific Deep Sea Fish months. This in turn deteriorated faster than fresh fish held at refridgeration temperature in air. Orange roughy were found to be a good source of protein with moisture levels similar to that o f other fish. They were o f medium fat content but have a very poor content o f the essential omega 3 and omega 6 fatty acids. Orange roughy can be stored at -18°C but its subsequent refridgerated shelf life will be shorter than that o f unfrozen orange roughy stored at refridgeration temperature. Orange roughy are a very important part o f the ecosystem. Their composition is less nutritionally beneficial than more readily available fish for human consumption and therefore should not be fished at all

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Swimming pool area for Cheverton Residence Hall [originally East Hall], Chapman College, Orange, California, ca. 1978.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exterior view of East Hall [renamed Cheverton Residence Hall], Chapman University, Orange, California. was constructed by Chapman College and dedicated in 1959 as a dormitory for women. It was named for Dr. Cecil F. Cheverton, president of Chapman College in the 1930s.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Working on the construction of East Hall [renamed Cheverton Residence Hall], Chapman University, Orange, California. It was constructed by Chapman College and dedicated in 1959 as a dormitory for women.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inside a dormitory room at Cheverton Residence Hall [originally East Hall], Chapman College, Orange, California, ca. 1960. The dormitory was dedicated in 1959 and torn down in 2002.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exterior of Cheverton Residence Hall [originally East Hall], Chapman College, Orange, California. It was dedicated in 1959 as a women's dormitory and was torn down in 2002.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

View across swimming pool of Cheverton Residence Hall [originally East Hall], Chapman College, Orange, California. Dedicated November 1,1959.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Around the pool area, Cheverton Residence Hall [originally East Hall], Chapman University, Orange, California, ca. 1978. Dedicated in 1959 and torn down in 2002.