50 resultados para Earthwork.
Resumo:
This document provides data for the case study presented in our recent earthwork planning papers. Some results are also provided in a graphical format using Excel.
Resumo:
A graph theoretic approach is developed for accurately computing haulage costs in earthwork projects. This is vital as haulage is a predominant factor in the real cost of earthworks. A variety of metrics can be used in our approach, but a fuel consumption proxy is recommended. This approach is novel as it considers the constantly changing terrain that results from cutting and filling activities and replaces inaccurate “static” calculations that have been used previously. The approach is also capable of efficiently correcting the violation of top down cutting and bottom up filling conditions that can be found in existing earthwork assignments and sequences. This approach assumes that the project site is partitioned into uniform blocks. A directed graph is then utilised to describe the terrain surface. This digraph is altered after each cut and fill, in order to reflect the true state of the terrain. A shortest path algorithm is successively applied to calculate the cost of each haul and these costs are summed to provide a total cost of haulage
Resumo:
Earthwork planning has been considered in this article and a generic block partitioning and modelling approach has been devised to provide strategic plans of various levels of detail. Conceptually this approach is more accurate and comprehensive than others, for instance those that are section based. In response to environmental concerns the metric for decision making was fuel consumption and emissions. Haulage distance and gradient are also included as they are important components of these metrics. Advantageously the fuel consumption metric is generic and captures the physical difficulties of travelling over inclines of different gradients, that is consistent across all hauling vehicles. For validation, the proposed models and techniques have been applied to a real world road project. The numerical investigations have demonstrated that the models can be solved with relatively little CPU time. The proposed block models also result in solutions of superior quality, i.e. they have reduced fuel consumption and cost. Furthermore the plans differ considerably from those based solely upon a distance based metric thus demonstrating a need for industry to reflect upon their current practices.
Resumo:
Planning techniques for large scale earthworks have been considered in this article. To improve these activities a “block theoretic” approach was developed that provides an integrated solution consisting of an allocation of cuts to fills and a sequence of cuts and fills over time. It considers the constantly changing terrain by computing haulage routes dynamically. Consequently more realistic haulage costs are used in the decision making process. A digraph is utilised to describe the terrain surface which has been partitioned into uniform grids. It reflects the true state of the terrain, and is altered after each cut and fill. A shortest path algorithm is successively applied to calculate the cost of each haul, and these costs are summed over the entire sequence, to provide a total cost of haulage. To solve this integrated optimisation problem a variety of solution techniques were applied, including constructive algorithms, meta-heuristics and parallel programming. The extensive numerical investigations have successfully shown the applicability of our approach to real sized earthwork problems.
Resumo:
A significant portion of the UK’s transportation system relies on a network of geotechnical earthworks (cuttings and embankments) that were constructed more than 100 years ago, whose stability is affected by the change in precipitation patterns experienced over the past few decades. The vulnerability of these structures requires a reliable, cost- and time-effective monitoring of their geomechanical condition. We have assessed the potential application of P-wave refraction for tracking the seasonal variations of seismic properties within an aged clay-filled railway embankment, located in southwest England. Seismic data were acquired repeatedly along the crest of the earthwork at regular time intervals, for a total period of 16 months. P-wave first-break times were picked from all available recorded traces, to obtain a set of hodocrones referenced to the same spatial locations, for various dates along the surveyed period of time. Traveltimes extracted from each acquisition were then compared to track the pattern of their temporal variability. The relevance of such variations over time was compared with the data experimental uncertainty. The multiple set of hodocrones was subsequently inverted using a tomographic approach, to retrieve a time-lapse model of VPVP for the embankment structure. To directly compare the reconstructed VPVP sections, identical initial models and spatial regularization were used for the inversion of all available data sets. A consistent temporal trend for P-wave traveltimes, and consequently for the reconstructed VPVP models, was identified. This pattern could be related to the seasonal distribution of precipitation and soil-water content measured on site.
Resumo:
A significant portion of UK’s infrastructures earthworks was built more than 100 years ago, without modern construction standards: poor maintenance and the change of precipitations pattern experienced in the past decades are currently compromising their stability, leading to an increasing number of failures. To address the need for a reliable and time-efficient monitoring of earthworks at risk of failure we propose here the use of two established seismic techniques for the characterization of the near surface, MASW and P-wave refraction. We have regularly collected MASW and P-wave refraction data, from March 2014 to February 2015, along 4 reduced-scale seismic lines located on the flanks of a heritage railway embankment located in Broadway, SW of England. We have observed a definite temporal variability in terms of phase velocities of SW dispersion curves and of P-wave travel times. The accurate choice of ad-hoc inversion strategies has allowed to reconstruct reliable VP and VS models through which it is potentially possible to track the temporal variations of geo-mechanical properties of the embankment slopes. The variability over time of seismic data and seismic velocities seems to correlate well with rainfall data recorded in the days immediately preceding the date of acquisition.
Resumo:
UANL
Resumo:
There is considerable controversy over whether pre-Columbian (pre-A.D. 1492) Amazonia was largely “pristine” and sparsely populated by slash-and-burn agriculturists, or instead a densely populated, domesticated landscape, heavily altered by extensive deforestation and anthropogenic burning. The discovery of hundreds of large geometric earthworks beneath intact rainforest across southern Amazonia challenges its status as a pristine landscape, and has been assumed to indicate extensive pre-Columbian deforestation by large populations. We tested these assumptions using coupled local- and regional-scale paleoecological records to reconstruct land use on an earthwork site in northeast Bolivia within the context of regional, climate-driven biome changes. This approach revealed evidence for an alternative scenario of Amazonian land use, which did not necessitate labor-intensive rainforest clearance for earthwork construction. Instead, we show that the inhabitants exploited a naturally open savanna landscape that they maintained around their settlement despite the climatically driven rainforest expansion that began ∼2,000 y ago across the region. Earthwork construction and agriculture on terra firme landscapes currently occupied by the seasonal rainforests of southern Amazonia may therefore not have necessitated large-scale deforestation using stone tools. This finding implies far less labor—and potentially lower population density—than previously supposed. Our findings demonstrate that current debates over the magnitude and nature of pre-Columbian Amazonian land use, and its impact on global biogeochemical cycling, are potentially flawed because they do not consider this land use in the context of climate-driven forest–savanna biome shifts through the mid-to-late Holocene.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.