998 resultados para Earth System Concept Inventory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation serves as a call to geoscientists to share responsibility with K-12 educators for increasing Earth science literacy. When partnerships are created among K-12 educators and geoscientists, the synergy created can promote Earth science literacy in students, teachers, and the broader community. The research described here resulted in development of tools that can support effective professional development for teachers. One tool is used during the planning stages to structure a professional development program, another set of tools supports measurement of the effectiveness of a development program, and the third tool supports sustainability of professional development programs. The Michigan Teacher Excellence Program (MiTEP), a Math/Science Partnership project funded by the National Science Foundation, served as the test bed for developing and testing these tools. The first tool, the planning tool, is the Earth Science Literacy Principles (ESLP). The ESLP served as a planning tool for the two-week summer field courses as part of the MiTEP program. The ESLP, published in 2009, clearly describe what an Earth science literate person should know. The ESLP consists of nine big ideas and their supporting fundamental concepts. Using the ESLP for planning a professional development program assisted both instructors and teacher-participants focus on important concepts throughout the professional development activity. The measurement tools were developed to measure change in teachers’ Earth science content-area knowledge and perceptions related to teaching and learning that result from participating in a professional development program. The first measurement tool, the Earth System Concept Inventory (ESCI), directly measures content-area knowledge through a succession of multiple-choice questions that are aligned with the content of the professional development experience. The second measurement, an exit survey, collects qualitative data from teachers regarding their impression of the professional development. Both the ESCI and the exit survey were tested for validity and reliability. Lesson study is discussed here as a strategy for sustaining professional development in a school or a district after the end of a professional development activity. Lesson study, as described here, was offered as a formal course. Teachers engaged in lesson study worked collaboratively to design and test lessons that improve the teachers’ classroom practices. Data regarding the impact of the lesson study activity were acquired through surveys, written documents, and group interviews. The data are interpreted to indicate that the lesson study process improved teacher quality and classroom practices. In the case described here, the lesson study process was adopted by the teachers’ district and currently serves as part of the district’s work in Professional Learning Communities, resulting in ongoing professional development throughout the district.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Land systems are the result of human interactions with the natural environment. Understanding the drivers, state, trends and impacts of different land systems on social and natural processes helps to reveal how changes in the land system affect the functioning of the socio-ecological system as a whole and the tradeoff these changes may represent. The Global Land Project has led advances by synthesizing land systems research across different scales and providing concepts to further understand the feedbacks between social-and environmental systems, between urban and rural environments and between distant world regions. Land system science has moved from a focus on observation of change and understanding the drivers of these changes to a focus on using this understanding to design sustainable transformations through stakeholder engagement and through the concept of land governance. As land use can be seen as the largest geo-engineering project in which mankind has engaged, land system science can act as a platform for integration of insights from different disciplines and for translation of knowledge into action.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earth System Models (ESM) have been successfuly developed over past few years, and are currently beeing used for simulating present day-climate, seasonal to interanual predictions of climate change. The supercomputer performance plays an important role in climate modeling since one of the challenging issues for climate modellers is to efficiently and accurately couple earth System components on present day computers architectures. At the Barcelona Supercomputing Center (BSC), we work with the EC- Earth System Model. The EC- Earth is an ESM, which currently consists of an atmosphere (IFS) and an ocean (NEMO) model that communicate with each other through the OASIS coupler. Additional modules (e.g. for chemistry and vegetation ) are under development. The EC-Earth ESM has been ported successfully over diferent high performance computin platforms (e.g, IBM P6 AIX, CRAY XT-5, Intelbased Linux Clusters, SGI Altix) at diferent sites in Europ (e.g., KNMI, ICHEC, ECMWF). The objective of the first phase of the project was to identify and document the issues related with the portability and performance of EC-Earth on the MareNostrum supercomputer, a System based on IBM PowerPC 970MP processors and run under a Linux Suse Distribution. EC-Earth was successfully ported to MareNostrum, and a compilation incompatibilty was solved by a two step compilation approach using XLF version 10.1 and 12.1 compilers. In addition, the EC-Earth performance was analyzed with respect to escalability and trace analysis with the Paravear software. This analysis showed that EC-Earth with a larger number of IFS CPUs (<128) is not feasible at the moment since some issues exists with the IFS-NEMO balance and MPI Communications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Product Data Management (PDM) systems have been utilized within companies since the 1980s. Mainly the PDM systems have been used by large companies. This thesis presents the premise that small and medium-sized companies can also benefit from utilizing the Product Data Management systems. Furthermore, the starting point for the thesis is that the existing PDM systems are either too expensive or do not properly respond to the requirements SMEs have. The aim of this study is to investigate what kinds of requirements and special features SMEs, operating in Finnish manufacturing industry, have towards Product Data Management. Additionally, the target is to create a conceptual model that could fulfill the specified requirements. The research has been carried out as a qualitative case study, in which the research data was collected from ten Finnish companies operating in manufacturing industry. The research data is formed by interviewing key personnel from the case companies. After this, the data formed from the interviews has been processed to comprise a generic set of information system requirements and the information system concept supporting it. The commercialization of the concept is studied in the thesis from the perspective of system development. The aim was to create a conceptual model, which would be economically feasible for both, a company utilizing the system and for a company developing it. For this reason, the thesis has sought ways to scale the system development effort for multiple simultaneous cases. The main methods found were to utilize platform-based thinking and a way to generalize the system requirements, or in other words abstracting the requirements of an information system. The results of the research highlight the special features Finnish manufacturing SMEs have towards PDM. The most significant of the special features is the usage of project model to manage the order-to-delivery –process. This differs significantly from the traditional concepts of Product Data Management presented in the literature. Furthermore, as a research result, this thesis presents a conceptual model of a PDM system, which would be viable for the case companies interviewed during the research. As a by-product, this research presents a synthesized model, found from the literature, to abstract information system requirements. In addition to this, the strategic importance and categorization of information systems within companies has been discussed from the perspective of information system customizations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The JModel suite consists of a number of models of aspects of the Earth System. They can all be run from the JModels website. They are written in the Java language for maximum portability, and are capable of running on most computing platforms including Windows, MacOS and Unix/Linux. The models are controlled via graphical user interfaces (GUI), so no knowledge of computer programming is required to run them. The models currently available from the JModels website are: Ocean phosphorus cycle Ocean nitrogen and phosphorus cycles Ocean silicon and phosphorus cycles Ocean and atmosphere carbon cycle Energy radiation balance model (under development) The main purpose of the models is to investigate how material and energy cycles of the Earth system are regulated and controlled by different feedbacks. While the central focus is on these feedbacks and Earth System stabilisation, the models can also be used in other ways. These resources have been developed by: National Oceanography Centre, Southampton project led by Toby Tyrrell and Andrew Yool, focus on how the Earth system works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The JModel suite consists of a number of models of aspects of the Earth System. The Java programmes model in detail aspects of the cycles of some major biogeochemical elements that exemplify the range of geochemical processes in marine environments.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data assimilation – the set of techniques whereby information from observing systems and models is combined optimally – is rapidly becoming prominent in endeavours to exploit Earth Observation for Earth sciences, including climate prediction. This paper explains the broad principles of data assimilation, outlining different approaches (optimal interpolation, three-dimensional and four-dimensional variational methods, the Kalman Filter), together with the approximations that are often necessary to make them practicable. After pointing out a variety of benefits of data assimilation, the paper then outlines some practical applications of the exploitation of Earth Observation by data assimilation in the areas of operational oceanography, chemical weather forecasting and carbon cycle modelling. Finally, some challenges for the future are noted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Europe's widely distributed climate modelling expertise, now organized in the European Network for Earth System Modelling (ENES), is both a strength and a challenge. Recognizing this, the European Union's Program for Integrated Earth System Modelling (PRISM) infrastructure project aims at designing a flexible and friendly user environment to assemble, run and post-process Earth System models. PRISM was started in December 2001 with a duration of three years. This paper presents the major stages of PRISM, including: (1) the definition and promotion of scientific and technical standards to increase component modularity; (2) the development of an end-to-end software environment (graphical user interface, coupling and I/O system, diagnostics, visualization) to launch, monitor and analyse complex Earth system models built around state-of-art community component models (atmosphere, ocean, atmospheric chemistry, ocean bio-chemistry, sea-ice, land-surface); and (3) testing and quality standards to ensure high-performance computing performance on a variety of platforms. PRISM is emerging as a core strategic software infrastructure for building the European research area in Earth system sciences. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Group on Earth Observations System of Systems, GEOSS, is a co-ordinated initiative by many nations to address the needs for earth-system information expressed by the 2002 World Summit on Sustainable Development. We discuss the role of earth-system modelling and data assimilation in transforming earth-system observations into the predictive and status-assessment products required by GEOSS, across many areas of socio-economic interest. First we review recent gains in the predictive skill of operational global earth-system models, on time-scales of days to several seasons. We then discuss recent work to develop from the global predictions a diverse set of end-user applications which can meet GEOSS requirements for information of socio-economic benefit; examples include forecasts of coastal storm surges, floods in large river basins, seasonal crop yield forecasts and seasonal lead-time alerts for malaria epidemics. We note ongoing efforts to extend operational earth-system modelling and assimilation capabilities to atmospheric composition, in support of improved services for air-quality forecasts and for treaty assessment. We next sketch likely GEOSS observational requirements in the coming decades. In concluding, we reflect on the cost of earth observations relative to the modest cost of transforming the observations into information of socio-economic value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in weather and climate research have demonstrated the role of the stratosphere in the Earth system across a wide range of temporal and spatial scales. Stratospheric ozone loss has been identified as a key driver of Southern Hemisphere tropospheric circulation trends, affecting ocean currents and carbon uptake, sea ice, and possibly even the Antarctic ice sheets. Stratospheric variability has also been shown to affect short term and seasonal forecasts, connecting the tropics and midlatitudes and guiding storm track dynamics. The two-way interactions between the stratosphere and the Earth system have motivated the World Climate Research Programme's (WCRP) Stratospheric Processes and Their Role in Climate (SPARC) DynVar activity to investigate the impact of stratospheric dynamics and variability on climate. This assessment will be made possible by two new multi-model datasets. First, roughly 10 models with a well resolved stratosphere are participating in the Coupled Model Intercomparison Project 5 (CMIP5), providing the first multi-model ensemble of climate simulations coupled from the stratopause to the sea floor. Second, the Stratosphere Historical Forecasting Project (SHFP) of WCRP's Climate Variability and predictability (CLIVAR) program is forming a multi-model set of seasonal hindcasts with stratosphere resolving models, revealing the impact of both stratospheric initial conditions and dynamics on intraseasonal prediction. The CMIP5 and SHFP model-data sets will offer an unprecedented opportunity to understand the role of the stratosphere in the natural and forced variability of the Earth system and to determine whether incorporating knowledge of the middle atmosphere improves seasonal forecasts and climate projections. Capsule New modeling efforts will provide unprecedented opportunities to harness our knowledge of the stratosphere to improve weather and climate prediction.