993 resultados para Early loading
Resumo:
AimTo evaluate prospectively the clinical and radiographic outcomes after 2 years of loading of 6 mm long moderately rough implants supporting single crowns in the posterior regions.Material and methodsForty SLActive Straumann (R) short (6 mm) implants were placed in 35 consecutively treated patients. Nineteen implants, 4.1 mm in diameter, and 21 implants, 4.8 mm in diameter, were installed. Implants were loaded after 6 weeks of healing. Implant survival rate, marginal bone loss and resonance frequency analysis (RFA) were evaluated at different intervals. The clinical crown/implant ratio was also calculated.ResultsTwo out of 40 implants were lost before loading. Hence, the survival rate before loading was 95%. No further technical or biological complications were encountered during the 2-year follow-up. The mean marginal bone loss before loading was 0.34 +/- 0.38 mm. After loading, the mean marginal bone loss was 0.23 +/- 0.33 and 0.21 +/- 0.39 mm at the 1- and 2-year follow-ups. The RFA values increased between insertion (70.2 +/- 9) and the 6-week evaluation (74.8 +/- 6.1). The clinical crown/implant ratio increased with time from 1.5 at the delivery of the prosthesis to 1.8 after 2 years of loading.ConclusionShort implants (6 mm) with a moderately rough surface loaded early (after 6 weeks) during healing yielded high implant survival rates and moderate loss of bone after 2 years of loading. Longer observation periods are needed to draw more definite conclusions on the reliability of short implants supporting single crowns.To cite this article:Rossi F, Ricci E, Marchetti C, Lang NP, Botticelli D. Early loading of single crowns supported by 6-mm-long implants with a moderately rough surface: a prospective 2-year follow-up cohort study.Clin. Oral Impl. Res. 21, 2010; 937-943.doi: 10.1111/j.1600-0501.2010.01942.x.
Resumo:
AimTo evaluate prospectively the clinical and radiographic outcomes after 5years of early loading of 6-mm implants with a moderately rough (SLActive((R))) surface supporting single crowns in the posterior regions.Material and methodsThirty-five consecutive patients received 40 SLActive((R)) (Straumann) 6-mm implants with a diameter of 4.1mm (n=19) or 4.8mm (n=21). Insertion torque and resonance frequency analysis (RFA) were measured at implant installation. RFA was also measured at abutment connection. SynOcta abutments were tightened with 35Ncm after 6weeks of healing, and single porcelain fuse to metal crowns was cemented within 1week. Implant survival rate and marginal bone loss were evaluated at various time intervals until 5years after loading. The clinical crown/implant ratio was calculated as well.ResultsTwo of 40 implants were lost before loading (incorporation rate 95%), and no further implant loss or technical complications were encountered during the 5-year follow-up period. A mean marginal bone loss of 0.70.6mm was found after 5years of function. The clinical crown/implant ratio increased with time from 1.6 at the delivery of the prosthesis to 2 after 5years of loading.ConclusionSix millimeter implants with a SLActive((R)) moderately rough surface supporting single crowns in the posterior region and loaded after 6-7weeks maintained full function for at least 5year with low marginal bone resorption.
Resumo:
BACKGROUND: This study evaluates 3-year success rates of titanium screw-type implants with a chemically modified sandblasted and acid-etched surface (mod SLA), which were functionally loaded after 3 weeks of healing. METHODS: A total of 56 implants, inserted in the posterior mandibles of 39 partially edentulous patients, underwent undisturbed healing for 3 weeks. At day 21, the implants were fully loaded with provisional crowns. Definitive metal ceramic restorations were fabricated after 6 months of healing. Clinical measurements regarding soft tissue parameters and radiographs were obtained at different time points up to 36 months after implant placement. The soft tissue and radiographic parameters for the mod SLA implants after 3 years in function were compared to a historic control group of implants with an SLA surface using an early loading protocol after 6 weeks. RESULTS: None of the implants failed to integrate. However, two implants were considered "spinners" at day 21 and were left unloaded for an extended period. Therefore, 96.4% of the inserted implants were loaded according to the protocol tested. All 56 implants, including the "spinners," showed favorable clinical and radiographic findings at the 3-year follow-up examination. All 56 implants were considered successfully integrated, resulting in a 3-year survival and success rate of 100%. Dental implants with a mod SLA surface demonstrated statistically significant differences for probing depths and clinical attachment level values compared to the historic control group, with the mod SLA surface implants having overall lower probing depths and clinical attachment level scores. CONCLUSION: This prospective study using an early loading protocol demonstrates that titanium implants with the mod SLA surface can achieve and maintain successful tissue integration over a period of 3 years.
Resumo:
PURPOSE: The aim of this two-center study was to evaluate screw-type titanium implants with a chemically modified, sandblasted and acid-etched surface when placed in the posterior maxilla or mandible, and loaded 21 days after placement. MATERIAL AND METHODS: All 56 patients met strict inclusion criteria and provided informed consent. Each patient displayed either a single-tooth gap, an extended edentulous space, or a distal extension situation in the posterior mandible or maxilla. Eighty-nine dental implants (SLActive, Institut Straumann AG, Basel, Switzerland) were inserted according to an established nonsubmerged protocol and underwent undisturbed healing for a period of 21 days. Where appropriate, the implants were loaded after 21 days of healing with provisional restorations in full occlusion. Definitive metal ceramic restorations were fabricated and positioned on each implant after 6 months of healing. Clinical measurements regarding soft tissue parameters and radiographs were obtained at different time points up to 24 months after implant placement. RESULTS: Of the 89 inserted implants, two (2.2%) implants failed to integrate and were removed during healing, and two (2.2%) additional implants required a prolonged healing time. A total of 85 (95.6%) implants were therefore loaded without incident after 21 days of healing. No additional implant was lost throughout the study period, whereas one implant was lost to follow-up and therefore left unaccounted for further analysis. The remaining 86 implants all exhibited favorable radiographic and clinical findings. Based on strict success criteria, these implants were considered successfully integrated 2 years after insertion, resulting in a 2-year success rate of 97.7%. CONCLUSION: The results of this prospective two-center study demonstrate that titanium implants with a modified SLA surface can predictably achieve successful tissue integration when loaded in full occlusion 21 days after placement. Integration could be maintained without incident for at least 2 years of follow-up.
Resumo:
OBJECTIVES: The aim of the present split-mouth study is to assess the peri-implant conditions around early-loaded sandblasted and acid-etched (SLA) implants, 5 years after abutment connection and to compare, in the same patients, the results obtained with a standard protocol using identical implants with a TPS surface. MATERIAL AND METHODS: Surgical procedure was performed by the same operator and was identical at test (SLA) and control (TPS) sites, in 32 healthy patients. Abutment connection was carried out at 35 N cm 6 weeks postsurgery for test sites and 12 weeks for the controls. Patients were seen regularly, for control and professional cleaning. At 60 months, clinical measures and radiographic bone changes were recorded by the same operator, blind to the type of surface of the implant, on 27 patients, as five patients were lost to follow-up. RESULTS: A total number of 106 implants were examined. No implant was lost. No significant differences were found with respect to the presence of plaque [modified plaque index (mPI) 0.27+/-0.56 vs. 0.32+/-0.54], bleeding on probing (29% vs. 32%), mean pocket depth (3.2+/-1 vs. 3.2+/-1 mm) or mean marginal bone loss (0.32+/-1.04 vs. 0.44+/-1.12 mm) between test and control. Four implants that presented 'spinning' at the time of abutment connection presented no significant differences from the rest of the test sites. CONCLUSION: The results of this prospective study confirm that SLA implants, under defined conditions, are suitable for early loading at 6 weeks in both the mandible and the maxilla. Limited implant spinning, occasionally found at abutment connection, produces no detrimental effect on the clinical outcome when properly handled.
Resumo:
PURPOSE: The aim of this prospective case series study was to evaluate the short-term success rates of titanium screw-type implants with a chemically modified sand-blasted and acid-etched (mod SLA) surface after 3 weeks of healing. MATERIAL AND METHODS: A total of 56 implants were inserted in the posterior mandible of 40 partially edentulous patients exhibiting bone densities of class I to III. After a healing period of 3 weeks, all implants were functionally loaded with a screw-retained crown or fixed dental prosthesis. The patients were recalled at weeks 4, 7, 12, and 26 for monitoring and assessment of clinical and radiological parameters, including implant stability quotient (ISQ) measurements. RESULTS: None of the implants failed to integrate. However, two implants were considered "spinners" at day 21 and left unloaded for an extended period. Therefore, 96.4% of the inserted implants were loaded according to the protocol tested. All 56 implants including the "spinners" showed favorable clinical and radiographic findings at the 6-month follow-up examination. The ISQ values increased steadily throughout the follow-up period. At the time of implant placement, the range of ISQ values exhibited a mean of 74.33, and by week 26, a mean value of 83.82 was recorded. Based on strict criteria, all 56 implants were considered successfully integrated, resulting in a 6-month survival and success rate of 100.0%. CONCLUSION: This prospective study using an early-loading protocol after 3 weeks of healing demonstrated that titanium implants with the modified SLA surface can achieve and maintain successful tissue integration over a period of at least 6 months. The ISQ method seems feasible to monitor implant stability during the initial wound-healing period.
Resumo:
OBJECTIVE: Immediate and early loading of dental implants can simplify treatment and increase overall patient satisfaction. The purpose of this 3-year prospective randomized-controlled multicenter study was to assess the differences in survival rates and bone level changes between immediately and early-loaded implants with a new chemically modified surface (SLActive). This investigation shows interim results obtained after 5 months. MATERIAL AND METHODS: Patients > or =18 years of age missing at least one tooth in the posterior maxilla or mandible were enrolled in the study. Following implant placement, patients received a temporary restoration either on the day of surgery (immediate loading) or 28-34 days after surgery (early loading); restorations consisted of single crowns or two to four unit fixed dental prostheses. Permanent restorations were placed 20-23 weeks following surgery. The primary efficacy variable was change in bone level (assessed by standardized radiographs) from baseline to 5 months; secondary variables included implant survival and success rates. RESULTS: A total of 266 patients were enrolled (118 males and 148 females), and a total of 383 implants were placed (197 and 186 in the immediate and early loading groups, respectively). Mean patient age was 46.3+/-12.8 years. After 5 months, implant survival rates were 98% in the immediate group and 97% in the early group. Mean bone level change from baseline was 0.81+/-0.89 mm in the immediate group and 0.56+/-0.73 mm in the early group (P<0.05). Statistical analysis revealed a significant center effect (P<0.0001) and a significant treatment x center interaction (P=0.008). CONCLUSIONS: The results suggested that Straumann implants with an SLActive can be used predictably in time-critical (early or immediate) loading treatment protocols when appropriate patient selection criteria are observed. The mean bone level changes observed from baseline to 5 months (0.56 and 0.81 mm) corresponded to physiological observations from other studies, i.e., were not clinically significant. The presence of a significant center effect and treatment x center interaction indicated that the differences in bone level changes between the two groups were center dependent.
Resumo:
Purpose: The aim of this study was to evaluate, through histomorphometric analysis, the effect that different loading times would have on the bone response around implants. Materials and Methods: Three Replace Select implants were placed on each side of the mandible in eight dogs (n = 48 implants). One pair of implants was selected for an immediate loading protocol (IL). After 7 days, the second pair of implants received prostheses for an early loading protocol (EL). Fourteen days after implant placement, the third pair of implants received prostheses for advanced early loading (AEL). Following 12 weeks of prosthetics, counted following the positioning of the metallic crowns for the AEL group, the animals were sacrificed and the specimens were prepared for histomorphometric analysis. The differences between loading time in the following parameters were evaluated through analysis of variance: bone-to-implant contact, bone density, and crestal bone loss. Results: The mean percentage of bone-to-implant contact for IL was 77.9% +/- 1.71%, for EL it was 79.25% +/- 2.11%, and for AEL it was 79.42% +/- 1.49%. The mean percentage of bone density for IL was 69.97% +/- 3.81%, for EL it was 69.23% +/- 5.68%, and for AEL it was 69.19% +/- 2.90%. Mean crestal bone loss was 1.57 +/- 0.22 mm for IL, 1.23 +/- 0.19 mm for EL, and 1.17 +/- 0.32 mm for AEL. There was no statistical difference for any of the parameters evaluated (P > .05). Conclusion: Different early loading times did not seem to significantly affect the bone response around dental implants. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:473-481
Resumo:
PURPOSE: To evaluate early and immediate loading of implants in the posterior maxilla and to investigate whether there is a difference in success rates, survival rates, and peri-implant parameters, including marginal bone level changes. MATERIALS AND METHODS: A comprehensive systematic review of the literature was conducted. The selection of publications reporting on human clinical studies was based on predetermined inclusion criteria and was agreed upon by two reviewers. RESULTS: Twelve papers were identified on early loading (two randomized controlled clinical trials [RCTs] and 10 prospective case series studies). Six papers were found on immediate loading (one RCT, four prospective case series, and one retrospective study). CONCLUSIONS: Under certain circumstances it is possible to successfully load dental implants in the posterior maxilla early or immediately after their placement in selected patients. The success rate appears to be technique sensitive, although no study has directly assessed this. A high degree of primary implant stability (high value of insertion torque) and implant surface characteristics play an important role. It is not possible to draw evidence-based conclusions concerning contraindications, threshold values for implant stability, bone quality and quantity needed, or impact of occlusal loading forces. As for the impact of the surgical technique on implant outcome in different bone densities, no studies prove significant superior results with one technique over another. Well-designed RCTs with a large number of patients are necessary to make early/immediate loading protocols in posterior maxilla evidence based, but ethical and practical considerations may limit the real possibility of such studies in the near future.
Resumo:
Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
PURPOSE: The aim of this study was to evaluate bone apposition to a modified sandblasted and acid-etched (SLA) implant surface (modSLA) in the canine mandible as compared with the standard SLA surface. MATERIAL AND METHODS: In this experimental study, all mandibular premolars and first molars were extracted bilaterally in five foxhounds. After a healing period of 6 months, each side of the mandible received six randomly assigned dental implants alternating between the standard SLA and modSLA surface. The dogs were sacrificed at 2 weeks (n=2) or 4 weeks (n=3) after implant placement. Histologic and histomorphometric analyses were then performed for each implant. RESULTS: The microscopic healing patterns at weeks 2 and 4 for the two implant types with the standard SLA and modSLA surfaces showed similar qualitative findings. New bone tissue had already established direct contact with implant surfaces after 2 weeks of healing. The mean percentage of newly formed bone in contact with the implant (BIC) was significantly greater for modSLA (28.2+/-7.9%) than for SLA (22.2+/-7.3%) (P<0.05). This difference was no longer evident after 4 weeks. An increase in BIC for both implant surface types occurred from weeks 2 to 4. This increase was statistically significant when compared with SLA at 2 weeks (P<0.05), but not when compared with modSLA at 2 weeks. CONCLUSION: The data from the present study demonstrate significantly more bone apposition for the modSLA surface than the standard SLA surface after 2 weeks of healing. This increased bone apposition may allow a further reduction of the healing period following implant placement for patients undergoing early loading procedures.
Resumo:
Objective: To investigate limb loading and dynamic stability during squatting in the early functional recovery of total hip arthroplasty (THA) patients. Design: Cohort study Setting: Inpatient rehabilitation clinic. Participants: A random sample of 61 THA patients (34♂/27♀; 62±9 yrs, 77±14 kg, 174±9 cm) was assessed twice, 13.2±3.8 days (PRE) and 26.6±3.3 days post-surgery (POST), and compared with a healthy reference group (REF) (22♂/16♀; 47±12yrs; 78±20kg; 175±10cm). Interventions: THA patients received two weeks of standard in-patient rehabilitation. Main Outcome Measure(s): Inter-limb vertical force distribution and dynamic stability during the squat maneuver, as defined by the root mean square (RMS) of the center of pressure in antero-posterior and medio-lateral directions, of operated (OP) and non-operated (NON)limbs. Self-reported function was assessed via FFb-H-OA 2.0 questionnaire. Results: At PRE, unloading of the OP limb was 15.8% greater (P<.001, d=1.070) and antero-posterior and medio-lateral center of pressure RMS were 30-34% higher in THA than REF P<.05). Unloading was reduced by 12.8% towards a more equal distribution from PRE to POST (P<.001, d=0.874). Although medio-lateral stability improved between PRE and POST (OP: 14.8%, P=.024, d=0.397; NON: 13.1%, P=.015, d=0.321), antero-posterior stability was not significantly different. Self-reported physical function improved by 15.8% (P<.001, d=0.965). Conclusion(s): THA patients unload the OP limb and are dynamically more unstable during squatting in the early rehabilitation phase following total hip replacement than healthy adults. Although loading symmetry and medio-lateral stability improved to the level of healthy adults with rehabilitation, antero-posterior stability remained impaired. Measures of dynamic stability and load symmetry during squatting provide quantitative information that can be used to clinically monitor early functional recovery from THA.
Resumo:
Purpose: The aim of the present study was to investigate the healing, integration, and maintenance of autogenous onlay bone grafts and implant osseointegration either loaded in the early or the delayed stages. Materials and Methods: A total of 5 male clogs received bilateral blocks of onlay bone grafts harvested from the contralateral alveolar ridge of the mandible. On one side, the bone block was secured by 3 dental implants (3.5 mm x 13.0 mm, Osseospeed; Astra Tech AB, Molndal, Sweden). Two implants at the extremities of the graft were loaded 2 clays after installation by abutment connection and prosthesis (simultaneous implant placement group); the implant in the middle remained unloaded and served as the control. On the other side, the block was fixed with 2 fixation screws inserted in the extremities of the graft. Four weeks later, the fixation screws were replaced with 3 dental implants. The loading procedure (delayed implant placement group) was performed 2 clays later, as described for the simultaneous implant placement sites. The animals were sacrificed 12 weeks after the grafting procedure. Implant stability was measured through resonance frequency analysis. The bone volume and density were assessed on computed tomography. The bone to implant contact and bone area in a region of interest were evaluated on histologic slides. Results: The implant stability quotient showed statistical significance in favor of the delayed loaded grafts (P=.001). The bone-to-implant contact (P=.008) and bone area in a region of interest (P=0.005) were significantly greater in the delayed group. Nevertheless, no difference was found in terms of graft volume and density between the early loaded and delayed-loaded approaches. Conclusions: The protocol in which the implant and bone graft were given delayed loading allows for effective quality of implant osseointegration and stabilization, with healing and remodeling occurring in areas near the implant resulting in denser bone architecture. (C) 2010 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Sing 68:825-832, 2010