995 resultados para Early Ordovician
Resumo:
The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Jiamusi Massif is an important tectonic unit in Northeast China. It’s significant for understanding the evolution of Paleo-Asian Ocean and reconstruction of the tectonic framework of Northeast China. Mudanjiang area is located in the southern margin of Jiamusi Massif and is the key to understand the evolution of Jiamusi Massif. However, the detailed geological research for Mudanjiang area has long been deficient in many important problems, such as the tectonic components of the Mudanjiang collision zone (MCZ), the age of collisional complexes and the scenario of tectonic evolution. Based on the lithology, geochemistry and the SHRIMP zircon U-Pb geochronology in Mudanjiang area, our new data and results come to some constraints for the tectonic reconstruction of MCZ as follows: 1) It is identified that the former suggestion, which the so-called “Heilongjiang Group” in Mudanjiang area is the vestige of oceanic crust, is correct. The oceanic relics represent the Neo-Proterozoic-Early Paleozoic oceanic basins based on the SHRIMP zircon U-Pb geochronology. 2) One sheet of gabbroic complex with oceanic island-type geochemical signature was discovered by this work in Mudanjiang area. 3) It is verified that the Proterozoic concordant U-Pb ages of the migmatites developed along the southern margin of Jiamusi massif, which represent the events of magmatic intrusion, as the direct evidence for the existence of the Proterozoic crystalline basements of the Jiamusi Massif. Based on geochronology, we suggest that the migmatization and coeval S-type granite magmatism of the southern margin of Jiamusi Massif took place about 490Ma. 4) The island arc complex has been found in the Heilongjiang Group, and the oceanic relics was found distributing on both sides, as provided important constraint for the tectonic reconstruction of the MCZ. 5) ~440Ma metamorphic event and coeval post-collisional granite magmatism have been firmly identified in the MCZ and its southern neighboring area. Together with previous data obtained by other researchers, our conclusions on the reconstruction of the tectonic architecture and evolution of the MCZ as follows: 1) The orogenic assemblages developed in the Mudanjiang collisional zone are featured by a sequence of ancient active continental margins and ensuing orogenic processing. The Mashan Group is the reworking basement of Jiamusi Massif, whereas the Heilongjiang Group represents arc and oceanic complexes characterized by imbricate deep-seated sliced and slivering sheets due to multi-phases of thrusting and nappe stacking. 2) The northern sub-belt of MCZ is probably the arc-continent collisional boundary related to the closure of main oceanic basin. The collisional age can be constrained by the events of syn-orogenic migmatization of migmatite, coeval S-type granite magmatism and the related granulite-facies metamorphism. Therefore, we suggested the collisional age of northern sub-belt is probably Cambrian-Early Ordovician. The extensive granulite-facies metamorphism of the Mashan Group in Jiamusi Massif, as affirmed by former works, was probably related with the collisional event. 3) The southern sub-belt of the MCZ was possibly related with the closure of back-arc basin. We presumed that the collisional age of southern sub-belt is about Ordovician-Early Silurian according to the ~440Ma extensive metamorphism and the occurrence of coeval post-collisional granite magmatism. 4) The extant structural architecture of the MCZ is related to the multi-phases of intra-continental superimposition, which is characterized by the Mesozoic nappe structure.
Resumo:
New petrologic, thermobarometric and U-Pb monazite geochronologic information allowed to resolve the metamorphic evolution of a high temperature mid-crustal segment of an ancient subduction-related orogen. The EI Portezuelo Metamorphic-Igneous Complex, in the northern Sierras Pampeanas, is mainly composed of migmatites that evolved from amphibolite to granulite metamorphic facies, reaching thermal peak conditions of 670-820 degrees C and 4.5-5.3 kbar. The petrographic study combined with conventional and pseudosection thermobarometry led to deducing a short prograde metamorphic evolution within migmatite blocks. The garnet-absent migmatites represent amphibolite-facies rocks, whereas the cordierite-garnet-K-feldspar-sillimanite migmatites represent higher metamorphic grade rocks. U-Pb geochronology on monazite grains within leucosome record the time of migmatization between approximate to 477 and 470 Ma. Thus, the El Portezuelo Metamorphic-Igneous Complex is an example of exhumed Early Ordovician anatectic middle crust of the Famatinian mobile belt. Homogeneous exposure of similar paleo-depths throughout the Famatinian back-arc and isobaric cooling paths suggest slow exhumation and consequent longstanding crustal residence at high temperatures. High thermal gradients uniformly distributed in the Famatinian back-arc can be explained by shallow convection of a low-viscosity asthenosphere promoted by subducting-slab dehydration. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Over 20 lamprophyre dykes, varying in width between a few centimeters and several meters, have been identified in central Sierra Norte - Eastern Pampean Ranges, Cordoba, Argentina. Their mineralogy and chemistry indicate that they are part of the calc-alkaline lamprophyres clan (CAL). They contain phenocrysts of magnesiohomblende +/- augite set in a groundmass of magnesiohornblende, calcic-plagioclase, alkali feldspar, and opaque minerals, which designate them as spessartite-type lamprophyres. Alteration products include chlorite, calcite and iron oxides after malfic phenocrysts, though some are partially replaced by actinolite. Feldspars are replaced by carbonate and clay minerals. The dykes are relatively primitive, and show restricted major element variation (SiO(2) 51.1-55.3 wt.%, Al(2)O(3) 12-16.6 wt.%, total alkalies 1.5-4.7 wt.%), high Mg# (55-77), high Cr contents (27-988 ppm) and moderate to high Ni contents (60-190 ppm). Lamprophyre LILE (e.g. Rb averages 110 ppm, Sr 211-387 ppm, Ba 203-452 ppm) are high relative to HFSE (e.g., Ta 0.2-1.6 ppm, Nb 4-11 ppm, Y 17-21 ppm), and are enriched in LREE (30-70 times chondrite). They are characterized by relatively high (208)Pb/(204)Pb (38.8-39.9), (207)Pb/(204)Pb(similar to 15.7), and (206)Pb/(204)Pb (18.7-20.1), combined with low (epsilon)epsilon(Nd) (-4.69 to -1.52) and a relative moderately high ((87)Sr/(86)Sr)(i) of 0.7055-0.7074. The Rb-Sr whole rock isochron indicates an Early Ordovician age of 485 +/- 25 Ma. The calculated T(DM) (1.7 Ga) suggests that these rocks appear to have originated from a reservoir that was created during a mantle metasomatism event related to the Pampean orogeny. The Sierra Norte lamprophyres show affinities with a subduction-related magma in an active continental margin. Their geochemical and isotopic features suggest a multicomponent source, composed of enriched mantle material variably contaminated by crustal components. The lamprophyric suite emplacement occurred at the dawning stage of the Pampean orogeny, in a regional post-collisional extensional setting developed in the Sierra Norte-Ambargasta batholith (SNAB) in Early Ordovician times. (C) 2008 Published by Elsevier Ltd.
Resumo:
The Early Paleozoic geodynamic evolution in SW Iberia is believed to have been dominated by the opening of the Rheic Ocean. The Rheic Ocean is generally accepted to have resulted from the drift of peri-Gondwanan terranes such as Avalonia from the northern margin of Gondwana during Late Cambrian-Early Ordovician times. The closure of the Rheic Ocean was the final result of a continent-continent collision between Gondwana and Laurussia that produced the Variscan orogen. The Ossa-Morena Zone is a peri-Gondwana terrane, which preserves spread fragments of ophiolites - the Internal Ossa-Morena Zones Ophiolite Sequences (IOMZOS). The final patchwork of the IOMZOS shows a complete oceanic lithospheric sequence with geochemical characteristics similar to the ocean-floor basalts, without any orogenic fingerprint and/or crustal contamination. The IOMZOS were obducted and imbricated with high pressure lithologies. Based on structural, petrological and whole-rock geochemical data, the authors argue that the IOMZOS represent fragments of the oceanic lithosphere from the Rheic Ocean. Zircon SHRIMP U-Pb geochronological data on metagabbros point to an age of ca. 480 Ma for IOMZOS, providing evidence of a well-developed ocean in SW Iberia during this period, reinforcing the interpretation of the Rheic Ocean as a wide ocean among the peri-Gondwanan terranes during Early Ordovician times.
Resumo:
Neoproterozoic geologic and geotectonic processes were of utmost importance in forming and structuring the basement framework of the South-American platform. Two large domains with distinct evolutionary histories are identified with respect to the Neoproterozoic era: the northwest-west (Amazonian craton and surroundings) and the central-southeast (the extra-Amazonian domain). In the first domain, Neoproterozoic events occurred only locally and were of secondary significance, and the geologic events, processes, and structures of the pre-Neoproterozoic (and syn-Brasiliano) cratonic block were much more influential. In the second, the extra-Amazonian domain, the final evolution, structures and forms are assigned to events related to the development of a complex net of Neoproterozoic mobile belts. These in turn resulted in strong reworking of the older pre-Neoproterozoic basement. In this domain, four distinct structural provinces circumscribe or are separated by relatively small pre- Neoproterozoic cratonic nuclei, namely the Pampean, Tocantins, Borborema and Mantiqueira provinces. These extra-Amazonian provinces were formed by a complex framework of orogenic branching systems following a diversified post-Mesoproterozoic paleogeographic scenario. This scenario included many types of basement inliers as well as a diversified organization of accretionary and collisional orogens. The basement inliers date from the Archean toMesoproterozoic periods and are different in nature. The escape tectonics that operated during the final consolidation stages of the provinces were important to and responsible for the final forms currently observed. These latest events, which occurred from the Late Ediacaran to the Early Ordovician, present serious obstacles to paleogeographic reconstructions. Two groups of orogenic collage systems are identified. The older system from the Tonian (>850 Ma) period is of restricted occurrence and is not fully understood due to strong reworking subsequent to Tonian times. The second group of orogenies is more extensive and more important. Its development began with diachronic taphrogenic processes in the Early Cryogenian period (ca. 850e750 Ma) and preceded a complex scenario of continental, transitional and oceanic basins. Subsequent orogenies (post 800 Ma) were also created by diachronic processes that ended in the Early Ordovician. More than one orogeny (plate interaction) can be identified either in space or in time in every province. The orogenic processes were not necessarily synchronous in different parts of the orogenic system, even within the same province. This particular group of orogenic collage events is known as the “Brasiliano”. All of the structural provinces of the extra-Amazonian domain exhibit final events that are marked by extrusion processes, are represented by long lineaments, and are fundamental to unraveling the structural history of the Phanerozoic sedimentary basins.
Resumo:
Mongolia occupies a central position within the eastern branch of the large accretionary Central Asian Orogenic Belt (CAOB) or Altaids. The present work aims to outline the geodynamic environment and possible evolution of this part of the eastern CAOB, predominantly from the Cambrian to the middle Palaeozoic. The investigation primarily focussed on zircon geochronology as well as whole-rock geochemical and Sm–Nd isotopic analyses for a variety of metaigneous rocks from the southern Hangay and Gobi-Altai regions in south-central Mongolia. The southern slope of the Hangay Mountains in central Mongolia exposes a large NWSE-trending middle Neoproterozoic ophiolitic complex (c. 650 Ma), which is tectonically integrated within an accretionary complex developed between the Precambrian Baydrag and Hangay crustal blocks. Formation of the entire accretionary system along the north-eastern margin of the Baydrag block mainly occurred during the early Cambrian, but convergence within this orogenic zone continued until the early Ordovician, because of on-going southward subduction-accretion of the Baydrag block. An important discovery is the identification of a late Mesoproterozoic to early Neoproterozoic belt within the northern Gobi-Altai that was reworked during the late Cambrian and throughout the late Ordovician/Devonian. Early Silurian low-grade mafic and felsic metavolcanic rocks from the northern Gobi-Altai display subduction-related geochemical features and highly heterogeneous Nd isotopic compositions, which suggest an origin at a mature active continental margin. Early Devonian protoliths of granodioritic and mafic gneisses from the southern Gobi-Altai display geochemical and Nd isotopic compositions compatible with derivation and evolution from predominantly juvenile crustal and mantel sources and these rocks may have been emplaced within the outboard portion of the late Ordovician/early Silurian active continental margin. Moreover, middle Devonian low-grade metavolcanic rocks from the southwestern Gobi-Altai yielded geochemical and Nd isotopic data consistent with emplacement in a transitional arc-backarc setting. The combined U–Pb zircon ages and geochemical data obtained from the Gobi-Altai region suggest that magmatism across an active continental margin migrated oceanwards through time by way of subduction zone retreat throughout the Devonian. Progressive extension of the continental margin was associated with the opening of a backarc basin and culminated in the late Devonian with the formation of a Japan-type arc front facing a southward open oceanic realm (present-day coordinates).
Resumo:
K-Ar ages of 82 slate and schist (white-mica-rich whole rock) samples are reported for Late Precambrian-Early Ordovician metamorphic rocks of the Wilson, Bowers and Robertson Bay terranes of northern Victoria Land. These are amalgamated in two vertical sections along composite NE-SW horizontal profiles across (1) Oates Coast in the north, and (2) Terra Nova Bay area in the south. The ages are in the range 328-517 Ma. Both profiles show some age variation with altitude, but more importantly, they define an inverted wedge shaped pattern, reflecting a "pop-up" strucure. This is oriented NW-SE at the eastern margin of the Wilson terrane, and the edges coincide with the Exiles and Wilson Thrusts which cross the region. Ages inside the "pop-up" structure are younger, ca. 460-480 Ma, than those along its eastern and western flanks, ca. 490-520 Ma. The K-Ar age patterns thus demonstrate a late Ross Orogenic age (ca. 460 Ma) for this structure, which may be associated with assembly of the Wilson and Bowers terranes.
Resumo:
Flat-lying Early and Middle Ordovician limestones exposed on the North margin of Estonia provide key insights into the early Paleozoic biosphere and climatic history of the Baltic Platform, and potentially offer a site for calibrating the duration of the proposed Moyero River Reversed Superchron. Past paleomagnetic analyses on these rocks have been focused primarily on determining paleomagnetic pole positions and have been hampered by relatively weak remanent magnetizations. We therefore applied techniques of the Rock and Paleomagnetic Instrument Development (RAPID) consortium using thin-walled, low-noise quartz glass sample holders on an automatic system to enhance magnetostratigraphic resolution. Our results, based on over 300 oriented core samples spanning the stratigraphic interval from the Volkhov stage, up through the Lasnamägi stage, confirm previous work isolating a stable characteristic magnetization of reversed polarity, and furthermore confirm the presence of an interval of magnetically Reversed polarity spanning an interval of at least 15 million year duration. In addition, we recognize a magnetic overprint of presumed Normal polarity held in antiferromagnetic phases, of presumed Permian age, based on the apparent polar wander path given by (Plado et al., 2010).
Resumo:
One of the greatest challenges in science lies in disentangling causality in complex, coupled systems. This is illustrated no better than in the dynamic interplay between the Earth and life. The early evolution and diversification of animals occurred within a backdrop of global change, yet reconstructing the potential role of the environment in this evolutionary transition is challenging. In the 200 million years from the end-Cryogenian to the Ordovician, enigmatic Ediacaran fauna explored body plans, animals diversified and began to biomineralize, forever changing the ocean's chemical cycles, and the biological community in shallow marine ecosystems transitioned from a microbial one to an animal one.
In the following dissertation, a multi-faceted approach combining macro- and micro-scale analyses is presented that draws on the sedimentology, geochemistry and paleontology of the rocks that span this transition to better constrain the potential environmental changes during this interval.
In Chapter 1, the potential of clumped isotope thermometry in deep time is explored by assessing the importance of burial and diagenesis on the thermometer. Eocene- to Precambrian-aged carbonates from the Sultanate of Oman were analyzed from current burial depths of 350-5850 meters. Two end-member styles of diagenesis independent of burial depth were observed.
Chapters 2, 3 and 4 explore the fallibility of the Ediacaran carbon isotope record and aspects of the sedimentology and geochemistry of the rocks preserving the largest negative carbon isotope excursion on record---the Shuram Excursion. Chapter 2 documents the importance of temperature, fluid composition and mineralogy on the delta 18-O min record and interrogates the bulk trace metal signal. Chapter 3 explores the spatial variability in delta 13-C recorded in the transgressive Johnnie Oolite and finds a north-to-south trend recording the onset of the excursion. Chapter 4 investigates the nature of seafloor precipitation during this excursion and more broadly. We document the potential importance of microbial respiratory reactions on the carbonate chemistry of the sediment-water interface through time.
Chapter 5 investigates the latest Precambrian sedimentary record in carbonates from the Sultanate of Oman, including how delta 13-C and delta 34-S CAS vary across depositional and depth gradients. A new model for the correlation of the Buah and Ara formations across Oman is presented. Isotopic results indicate delta 13-C varies with relative eustatic change and delta 34-S CAS may vary in absolute magnitude across Oman.
Chapter 6 investigates the secular rise in delta 18-Omin in the early Paleozoic by using clumped isotope geochemistry on calcitic and phosphatic fossils from the Cambrian and Ordovician. Results do not indicate extreme delta 18-O seawater depletion and instead suggest warmer equatorial temperatures across the early Paleozoic.
Resumo:
Specimens of the polyplacophoran mollusk 'Helminthochiton' thraivensis Reed from the Upper Ordovician of southwest Scotland provide rare examples of complete valve series preserved in near life position, albeit as external molds. Application of high-resolution X-ray microtomography to one such specimen has revealed the exceptional preservation of its last meal, which included elements of a crinoid column, in its intestine. The interaction was either predatory or scavenging; extant chitons are not known to be crinoidivorous. This is the earliest direct record of predation or scavenging on crinoids in the fossil record. It is also the first indication that the broad axial canal of primitive crinoids may have contained nutritious tissues. The predatory or scavenging habit of H. thraivensis is consistent with its inferred phylogenetic position as a stem-group aplacophoran and provides new data suggesting an origin of carnivory early in the evolution of this clade.
Resumo:
The basement rock of the Pampean flat-slab (Sierras Pampeanas) in the Central Andes was uplifted and rotated in the Cenozoic era. The Western Sierras Pampeanas are characterised by meta-igneous rocks of Grenvillian Mesoproterozoic age and metasedimentary units metamorphosed in the Ordovician period. These rocks, known as the northern Cuyania composite terrane, were derived from Laurentia and accreted toward Western Gondwana during the Early Paleozoic. The Sierra de Umango is the westernmost range of the Western Sierras Pampeanas.This range is bounded by the Devonian sedimentary rocks of the Precordillera on the western side and Tertiary rocks from the Sierra de Maz and Sierra del Espinal on the eastern side and contains igneous and sedimentary rocks outcroppings from the Famatina System on the far eastern side. The Sierra de Umango evolved during a period of polyphase tectonic activity, including an Ordovician collisional event, a Devonian compressional deformation, Late Paleozoic and Mesozoic extensional faulting and sedimentation (Paganzo and Ischigualasto basins) and compressional deformation of the Andean foreland during the Cenozoic. A Nappe System and an important shear zone, La Puntilla-La Falda Shear Zone (PFSZ), characterise the Ordovician collisional event, which was related to the accretion of Cuyania Terrane to the proto-Andean margin of Gondwana. Three continuous deformational phases are recognised for this event: the D1 phase is distinguished by relics of 51 preserved as internal foliation within interkinematic staurolite por-phyroblasts and likely represents the progressive metamorphic stage; the D2 phase exhibits P-T conditions close to the metamorphic peak that were recorded in an 52 transposition or a mylonitic foliation and determine the main structure of Umango; and the D3 phase is described as a set of tight to recumbent folds with S3 axial plane foliation, often related to thrust faults, indicating the retrogressive metamorphic stage. The Nappe System shows a top-to-the S/SW sense direction of movement, and the PFSZ served as a right lateral ramp in the exhumation process. This structural pattern is indicative of an oblique collision, with the Cuyania Terrane subducting under the proto-Andean margin of Gondwana in the NE direction. This continental subduction and exhumation lasted at least 30 million years, nearly the entire Ordovician period, and produced metamorphic conditions of upper amphibolite-to-granulite facies in medium- to high-pressure regimes. At least two later events deformed the earlier structures: D4 and D5 deformational phases. The D4 deformational phase corresponds to upright folding, with wavelengths of approximately 10 km and a general N-S orientation. These folds modified the S2 surface in an approximately cylindrical manner and are associated with exposed, discrete shear zones in the Silurian Guandacolinos Granite. The cylindrical pattern and subhorizontal axis of the D4 folds indicates that the S2 surface was originally flat-lying. The D4 folds are responsible for preserving the basement unit Juchi Orthogneiss synformal klippen. This deformation corresponds to the Chanica Tectonic during the interval between the Devonian and Carboniferous periods. The D5 deformational phase comprehends cuspate-lobate shaped open plunging folds with E W high-angle axes (D5 folds) and sub-vertical spaced cleavage. The D5 folds and related spaced cleavage deformed the previous structures and could be associated with uplifting during the Andean Cycle. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Three complementary imaging techniques were used to describe a complex rosette-shaped microboring that penetrates the shells of brachiopods from the OrdovicianSilurian shallow marine limestones of Anticosti Island, Canada. Pyrodendrina cupra n. igen. and isp. is among the oldest dendrinid microborings and consists of shallow and deep penetrating canals that radiate from a central polygonal chamber. The affinity of the tracemaker is unknown, but a foraminiferal origin, as proposed for some dendrinid borings, is rejected. Combining microCT with traditional stereomicroscopy and SEM helped distinguish and quantify fine morphological features while maintaining contextual information of the microboring within the shell substrate. Different imaging techniques inherently bias the description of microborings. These biases must be accounted for as new methods in ichnotaxonomy are integrated with past research based on different methods.
Resumo:
Metasediments in the three early Palaeozoic Ross orogenic terranes in northern Victoria Land and Oates Land (Antarctica) are geochemically classified as immature litharenites to wackes and moderately mature shales. Highly mature lithotypes with Chemical Index of Weathering values of >=95 are typically absent. Geochemical and Rb-Sr and Sm-Nd isotope results indicate that the turbiditic metasediments of the Cambro-Ordovician Robertson Bay Group in the eastern Robertson Bay Terrane represent a very homogeneous series lacking significant compositional variations. Major variations are only found in chemical parameters which reflect differences in degree of chemical weathering of their protoliths and in mechanical sorting of the detritus. Geochemical data, 87Sr/ 86Sr t=490 Ma ratios of 0.7120 - 0.7174, epsilonNd, t=490 Ma values of -7.6 to -10.3 and single-stage Nd-model ages of 1.7 - 1.9 Ga are indicative of an origin from a chemically evolved crustal source of on average late Palaeoproterozoic formation age. There is no evidence for significant sedimentary infill from primitive "ophiolitic" sources. Metasediments of the Middle Cambrian Molar Formation (Bowers Terrane) are compositionally strongly heterogeneous. Their major and trace element data and Sm-Nd isotope data (epsilonNd, t=500 Ma values of -14.3 to -1.2 and single-stage Nd-model ages of 1.7 - 2.1 Ga) can be explained by mixing of sedimentary input from an evolved crustal source of at least early Palaeoproterozoic formation age and from a primitive basaltic source. The chemical heterogeneity of metasediments from the Wilson Terrane is largely inherited from compositional variations of their precursor rocks as indicated by the Ni vs TiO2 diagram. Single-stage Nd-model ages of 1.6 -2.2 Ga for samples from more western inboard areas of the Wilson Terrane (epsilonNd, t=510 Ma -7.0 to -14.3) indicate a relatively high proportion of material derived from a crustal source with on average early Palaeoproterozoic formation age. Metasedimentary series in an eastern, more outboard position (epsilonNd, t=510 Ma -5.4 to -10.0; single-stage Nd model ages 1.4 - 1.9) on the contrary document stronger influence of a more primitive source with younger formation ages. The chemical and isotopic characteristics of metasediments from the Bowers and Wilson terranes can be explained by variable contributions from two contrasting sources: a cratonic continental crust similar to the Antarctic Shield exposed in Georg V Land and Terre Adélie some hundred kilometers west of the study area and a primitive basaltic source probably represented by the Cambrian island-arc of the Bowers Terrane. While the data for metasediments of the Robertson Bay Terrane are also compatible with an origin from an Antarctic-Shield-type source, there is no direct evidence from their geochemistry or isotope geochemistry for an island-arc component in these series.
Resumo:
This paper is the initial part of a comprehensive bipartite monograph of palynomorphs (viz., acritarchs, prasinophyte phycomata, and chitinozoans) that are represented profusely in marine lower Palaeozoic strata of the Canning Basin, Western Australia. The prime aim is to establish a palynologically based zonal scheme for the Ordovician sequence as represented in five cored boreholes drilled through the Lower to Middle Ordovician strata of the central-northeastern Canning Basin. These strata embrace the Oepikodus communis through Phragmodus-Plectodina conodont zonal interval and comprise (in ascending order) the Willara, Goldwyer, and Nita formations, of inferred early Arenig to Llanvirn age. All three formations contain moderately diverse and variably preserved palynomorphs. The palynomorph taxa, detailed systematically in the current Part One of this monograph, comprise 66 species of acritarchs and six of prasinophytes. Of these, two species of prasinophytes and 11 of acritarchs are newly established: Cymatiosphaera meandrica and Pterospermella franciniae; Aremoricanium hyalinum, A. solaris, Baltisphaeridium tenuicomatum, Gorgonisphaeridium crebrum, Lophosphaeridium aequalium, L. aspersum, Micrhystridium infrequens, Pylantios hadrus, Sertulidium amplexum, Striatotheca indistincta, and Tribulidium globosum. Pylantios (typified by P. hadrus), Sertulidium (typified by S. amplexum), and Tribulidium (typified by T globosum); are defined as new acritarch genera. Three new combinations are instituted: Baltisphaeridium pugiatum (PLAYFORD & MARTIN 1984), Polygonium canningianum (COMRAZ & PENIGUEL 1972), and Sacculidium furtivum (PLAYFORD & MARTIN 1984); and Ammonidium macilentum PLAYFORD & MARTIN 1984 and Sacculidium furtivum (PLAYFORD & MARTIN 1984) are emended. An appreciable number of palynomorph species are not formally named owing to lack of sufficient or adequately preserved specimens; others are compared but not positively identified with previously instituted species. The ensuing Part Two of this study will complete the systematic-descriptive documentation, i.e., chitinozoans, and evaluate the Canning Basin palynoflora in terms of its chronological and stratigraphic-correlative significance.