902 resultados para Early Animal Evolution
Resumo:
Molecular data have converged on a consensus about the genus-level phylogeny of extant platyrrhine monkeys, but for most extinct taxa and certainly for those older than the Pleistocene we must rely upon morphological evidence from fossils. This raises the question as to how well anatomical data mirror molecular phylogenies and how best to deal with discrepancies between the molecular and morphological data as we seek to extend our phylogenies to the placement of fossil taxa. Here I present parsimony-based phylogenetic analyses of extant and fossil platyrrhines based on an anatomical dataset of 399 dental characters and osteological features of the cranium and postcranium. I sample 16 extant taxa (one from each platyrrhine genus) and 20 extinct taxa of platyrrhines. The tree structure is constrained with a "molecular scaffold" of extant species as implemented in maximum parsimony using PAUP with the molecular-based 'backbone' approach. The data set encompasses most of the known extinct species of platyrrhines, ranging in age from latest Oligocene (∼26 Ma) to the Recent. The tree is rooted with extant catarrhines, and Late Eocene and Early Oligocene African anthropoids. Among the more interesting patterns to emerge are: (1) known early platyrrhines from the Late Oligocene through Early Miocene (26-16.5Ma) represent only stem platyrrhine taxa; (2) representatives of the three living platyrrhine families first occur between 15.7 Ma and 13.5 Ma; and (3) recently extinct primates from the Greater Antilles (Cuba, Jamaica, Hispaniola) are sister to the clade of extant platyrrhines and may have diverged in the Early Miocene. It is probable that the crown platyrrhine clade did not originate before about 20-24 Ma, a conclusion consistent with the phylogenetic analysis of fossil taxa presented here and with recent molecular clock estimates. The following biogeographic scenario is consistent with the phylogenetic findings and climatic and geologic evidence: Tropical South America has been a center for platyrrhine diversification since platyrrhines arrived on the continent in the middle Cenozoic. Platyrrhines dispersed from tropical South America to Patagonia at ∼25-24 Ma via a "Paraná Portal" through eastern South America across a retreating Paranense Sea. Phylogenetic bracketing suggests Antillean primates arrived via a sweepstakes route or island chain from northern South America in the Early Miocene, not via a proposed land bridge or island chain (GAARlandia) in the Early Oligocene (∼34 Ma). Patagonian and Antillean platyrrhines went extinct without leaving living descendants, the former at the end of the Early Miocene and the latter within the past six thousand years. Molecular evidence suggests crown platyrrhines arrived in Central America by crossing an intermittent connection through the Isthmus of Panama at or after 3.5Ma. Any more ancient Central American primates, should they be discovered, are unlikely to have given rise to the extant Central American taxa in situ.
Resumo:
Gnathostome vertebrates have multiple members of the Dlx family of transcription factors that are expressed during the development of several tissues considered to be vertebrate synapomorphies, including the forebrain, cranial neural crest, placodes, and pharyngeal arches. The Dlx gene family thus presents an ideal system in which to examine the relationship between gene duplication and morphological innovation during vertebrate evolution. Toward this end, we have cloned Dlx genes from the lamprey Petromyzon marinus, an agnathan vertebrate that occupies a critical phylogenetic position between cephalochordates and gnathostomes. We have identified four Dlx genes in P. marinus, whose orthology with gnathostome Dlx genes provides a model for how this gene family evolved in the vertebrate lineage. Differential expression of these lamprey Dlx genes in the forebrain, cranial neural crest, pharyngeal arches, and sensory placodes of lamprey embryos provides insight into the developmental evolution of these structures as well as a model of regulatory evolution after Dlx gene duplication events.
Resumo:
Mesoproterozoic marine successions worldwide record a shift in average delta(13)C values from 0 to +3.5parts per thousand, with the latter value evident in successions younger than 1250 Ma. New carbon isotope data from the similar to 1300 to 1270 Ma Dismal Lakes Group, Arctic Canada, provide further insight into this fundamental transition. Data reveal that the shift to higher VC values was gradual and marked by occasional excursions to values less than 0 parts per thousand. When compared to records from older and younger marine successions, it is evident that the difference between isotopic minima and maxima increased with time, indicating that the marine system evolved to become isotopically more variable. We interpret these patterns to record an increase in the crustal inventory of organic carbon, reflecting eukaryotic diversification and a change in the locus of organic carbon burial to include anoxic deep marine sites where preservation potential was high. We speculate that the release of O-2 to Earth's surface environments associated with increased organic carbon storage induced irreversible changes in the Mesoproterozoic biosphere, presaging the more extreme environmental and evolutionary developments of the Neoproterozoic.
Resumo:
Obscured AGN are a crucial ingredient to understand the full growth history of super massive black holes and the coevolution with their host galaxies, since they constitute the bulk of the BH accretion. In the distant Universe, many of them are hosted by submillimeter galaxies (SMGs), characterized by a high production of stars and a very fast consumption of gas. Therefore, the analysis of this class of objects is fundamental to investigate the role of the ISM in the early coevolution of galaxies and black holes. We present a multiwavelength study of a sample of six obscured X-ray selected AGN at z>2.5 in the CDF-S, detected in the far-IR/submm bands. We performed the X-ray spectral analysis based on the 7Ms Chandra dataset, which provides the best X-ray spectral information currently available for distant AGN. We were able to place constraints on the obscuring column densities and the intrinsic luminosities of our targets. Moreover, we built up the UV to FIR spectral energy distributions (SEDs) by combining the broad-band photometry from CANDELS and the Herschel catalogs, and analyzed them by means of an SED decomposition technique. Therefore, we derived important physical parameters of both the host galaxy and the AGN. In addition, we obtained, through an empirical calibration, the gas mass in the host galaxy and assessed the galaxy sizes in order to estimate the column density associated with the host ISM. The comparison of the ISM column densities with the values measured from the X-ray spectral analysis pointed out that the contribution of the host ISM to the obscuration of the AGN emission can be substantial, ranging from ~10% up to ~100% of the value derived from the X-ray spectra. The absorption may occur at different physical scales in these sources and, in particular, the medium in the host galaxy is an ingredient that should be taken into account, since it may have a relevant role in driving the early co-evolution of galaxies with their black holes.
Resumo:
Sponges (phylum Porifera) had been considered as an enigmatic phylum, prior to the analysis of their genetic repertoire/tool kit. Already with the isolation of the first adhesion molecule, galectin, it became clear that the sequences of sponge cell surface receptors and of molecules forming the intracellular signal transduction pathways triggered by them, share high similarity with those identified in other metazoan phyla. These studies demonstrated that all metazoan phyla, including Porifera, originate from one common ancestor, the Urmetazoa. The sponges evolved prior to the Ediacaran-Cambrian boundary (542 million years ago [myr]) during two major "snowball earth events", the Sturtian glaciation (710 to 680 myr) and the Varanger-Marinoan ice ages (605 to 585 myr). During this period the ocean was richer in silica due to the silicate weathering. The oldest sponge fossils (Hexactinellida) have been described from Australia, China and Mongolia and are thought to have existed coeval with the diverse Ediacara fauna. Only little younger are the fossils discovered in the Sansha section in Hunan (Early Cambrian; China). It has been proposed that only the sponges possessed the genetic repertoire to cope with the adverse conditions, e.g. temperature-protection molecules or proteins protecting them against ultraviolet radiation. The skeletal elements of the Hexactinellida (model organisms Monorhaphis chuni and Monorhaphis intermedia or Hyalonema sieboldi) and Demospongiae (models Suberites domuncula and Geodia cydonium), the spicules, are formed enzymatically by the anabolic enzyme silicatein and the catabolic enzyme silicase. Both, the spicules of Hexactinellida and of Demospongiae, comprise a central axial canal and an axial filament which harbors the silicatein. After intracellular formation of the first lamella around the channel and the subsequent extracellular apposition of further lamellae the spicules are completed in a net formed of collagen fibers. The data summarized here substantiate that with the finding of silicatein a new aera in the field of bio/inorganic chemistry started. For the first time strategies could be formulated and experimentally proven that allow the formation/synthesis of inorganic structures by organic molecules. These findings are not only of importance for the further understanding of basic pathways in the body plan formation of sponges but also of eminent importance for applied/commercial processes in a sustainable use of biomolecules for novel bio/inorganic materials.
Resumo:
BACKGROUND: HIV-1 clade C (HIV-C) predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb) responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1) HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2) phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an "early," recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a "late" form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM) with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to "late" SHIV-1157ipd3N4 (tier 2). After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4+ T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. CONCLUSIONS/SIGNIFICANCE: SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates.
Resumo:
We know little about the genomic events that led to the advent of a multicellular grade of organization in animals, one of the most dramatic transitions in evolution. Metazoan multicellularity is correlated with the evolution of embryogenesis, which presumably was underpinned by a gene regulatory network reliant on the differential activation of signaling pathways and transcription factors. Many transcription factor genes that play critical roles in bilaterian development largely appear to have evolved before the divergence of cnidarian and bilaterian lineages. In contrast, sponges seem to have a more limited suite of transcription factors, suggesting that the developmental regulatory gene repertoire changed markedly during early metazoan evolution. Using whole- genome information from the sponge Amphimedon queenslandica, a range of eumetazoans, and the choanoflagellate Monosiga brevicollis, we investigate the genesis and expansion of homeobox, Sox, T- box, and Fox transcription factor genes. Comparative analyses reveal that novel transcription factor domains ( such as Paired, POU, and T- box) arose very early in metazoan evolution, prior to the separation of extant metazoan phyla but after the divergence of choanoflagellate and metazoan lineages. Phylogenetic analyses indicate that transcription factor classes then gradually expanded at the base of Metazoa before the bilaterian radiation, with each class following a different evolutionary trajectory. Based on the limited number of transcription factors in the Amphimedon genome, we infer that the genome of the metazoan last common ancestor included fewer gene members in each class than are present in extant eumetazoans. Transcription factor orthologues present in sponge, cnidarian, and bilaterian genomes may represent part of the core metazoan regulatory network underlying the origin of animal development and multicellularity.
Resumo:
The cephalochordate amphioxus is the best available proxy for the last common invertebrate ancestor of the vertebrates. During the last decade, the developmental genetics of amphioxus have been extensively examined for insights into the evolutionary origin and early evolution of the vertebrates. Comparisons between expression domains of homologous genes in amphioxus and vertebrates have strengthened proposed homologies between specific body parts. Molecular genetic studies have also highlighted parallels in the developmental mechanisms of amphioxus and vertebrates. In both groups, a similar nested pattern of Hox gene expression is involved in rostrocaudal patterning of the neural tube, and homologous genes also appear to be involved in dorsoventral neural patterning. Studies of amphioxus molecular biology have also hinted that the protochordate ancestor of the vertebrates included cell populations that modified their developmental genetic pathways during early vertebrate evolution to yield definitive neural crest and neurogenic placodes. We also discuss how the application of expressed sequence tag and gene-mapping approaches to amphioxus have combined with developmental studies to advance our understanding of chordate genome evolution. We conclude by considering the potential offered by the sequencing of the amphioxus genome, which was completed in late 2004.
Resumo:
Homeobox genes encode DNA-binding proteins, many of which are implicated in the control of embryonic development. Evolutionarily, most homeobox genes fall into two related clades: the ANTP and the PRD classes. Some genes in ANTP class, notably Hox, ParaHox, and NK genes, have an intriguing arrangement into physical clusters. To investigate the evolutionary history of these gene clusters, we examined homeobox gene chromosomal locations in the cephalochordate amphioxus, Branchiostoma floridae. We deduce that 22 amphioxus ANTP class homeobox genes localize in just three chromosomes. One contains the Hox cluster plus AmphiEn, AmphiMnx, and AmphiDll. The ParaHox cluster resides in another chromosome, whereas a third chromosome contains the NK type homeobox genes, including AmphiMsx and ArnphiTlx. By comparative analysis we infer that clustering of ANTP class homeobox genes evolved just once, during a series of extensive cis-duplication events of genes early in animal evolution. A trans-duplication event occurred later to yield the Hox and ParaHox gene clusters on different chromosomes. The results obtained have implications for understanding the origin of homeobox gene clustering, the diversification of the ANTP class of homeobox genes, and the evolution of animal genomes.
Resumo:
From field observations on Drimys brasiliensis, principally in the Botucatu region of São Paulo State, Brazil, new data on the reproductive biology, the rhythm of growth, and the development of lateral cymose inflorescences, flowers and fruits are presented. Pollination accelerates the rate of flower-development for about 4-6 days. Pollination experiments show that D. brasiliensis is not self-sterile; because of mechanical devices the sticky pollen grains do not normally come into contact with the stigmata unless an animal pollen vector is involved. The pollinators are diurnal Coleoptera, Diptera and Thysanoptera which eat from the pollen, lick from the stigmatic exudates and (in case of the flies) probably also from the staminal glands. Fruit- and seedeaters are birds which seem to be the main dispersal agents. Establishment of new individuals normally is through seedlings, but also by vegetative propagation through plagiotropous branches which may root and separate from the mother plant. The morphological, developmental and reproductive aspects in D. brasiliensis are discussed in a wider context, compared with data from other Magnoliidae, and related to aspects of early Angiosperm evolution. © 1980 Springer-Verlag.
Resumo:
Exon shuffling has been characterized as one of the major evolutionary forces shaping both the genome and the proteome of eukaryotes. This mechanism was particularly important in the creation of multidomain proteins during animal evolution, bringing a number of functional genetic novelties. Here, genome information from a variety of eukaryotic species was used to address several issues related to the evolutionary history of exon shuffling. By comparing all protein sequences within each species, we were able to characterize exon shuffling signatures throughout metazoans. Intron phase (the position of the intron regarding the codon) and exon symmetry (the pattern of flanking introns for a given exon or block of adjacent exons) were features used to evaluate exon shuffling. We confirmed previous observations that exon shuffling mediated by phase 1 introns (1-1 exon shuffling) is the predominant kind in multicellular animals. Evidence is provided that such pattern was achieved since the early steps of animal evolution, supported by a detectable presence of 1-1 shuffling units in Trichoplax adhaerens and a considerable prevalence of them in Nematostella vectensis. In contrast, Monosiga brevicollis, one of the closest relatives of metazoans, and Arabidopsis thaliana, showed no evidence of 1-1 exon or domain shuffling above what it would be expected by chance. Instead, exon shuffling events are less abundant and predominantly mediated by phase 0 introns (0-0 exon shuffling) in those non-metazoan species. Moreover, an intermediate pattern of 1-1 and 0-0 exon shuffling was observed for the placozoan T. adhaerens, a primitive animal. Finally, characterization of flanking intron phases around domain borders allowed us to identify a common set of symmetric 1-1 domains that have been shuffled throughout the metazoan lineage.
Resumo:
二十世纪初,前人在中国的东北地区发现了大量保存完好的动物化石,其中以狼鳍鱼最具代表性,科学家将在该地区发现的化石生物群命名为“热河生物群”。“热河”这一名称得名于该化石群的经典产地,即当时的热河省东部地区。建国后,热河省被撤消,其西部划归河北省,东部划归辽宁省。原热河生物群的经典产地因此落在了今天辽宁省的西部,即辽西地区。但是,“热河生物群”这一在地质古生物学界具有深刻影响的名称仍然保留着,而且近几年来在该地区又有大量的鸟类以及恐龙的化石被发现。该地区现在已经成为世界级的古生物宝库。通过不同的方法对该地区进行时代测定的结果认为该地区的时代为白垩纪早期。 与发现众多、研究深入的动物群相比,在该地区开展的植物学研究起步较晚,但在最近几年取得了很大的进展。目前为止,已经发现的植物类群就有苔藓、蕨类、银杏、苏铁、松柏类和被子植物。其中,银杏、苏铁、松柏类尤为丰富。理论上,被子植物也正是从该生物群所代表的白垩纪早期开始出现并逐步走向繁荣的。近年来在热河生物群中就有不少关于被子植物早期类群的报道,如古果属A rchaefructus和里海果属Hyrcantha等。传统上认为,买麻藤目植物与被子植物起源的关系非常密切,但是最近的分子系统学研究却将该类群推离了被子植物,而作为裸子植物高等类群松柏类的姐妹群对待。但是,在热河生物群中的一些新买麻藤目植物的化石标本与被子植物早期类型化石标本的发现却提供了新的思路或证据。如近年来,我国学者已经在该生物群中报道的麻黄科下的2属4种。这些发现的类群都与买麻藤植物的基部类群麻黄属密切相关。这种新发现带来的证据或许可以为被子植物起源这一世界难题的解决提供新的思路。 在对前人关于买麻藤目植物化石标本的研究进行整理的时候,我们发现我们的部分化石与前人发表的一个种Ephedrites chenii在标本的形态学特征方面完全相同。但是在对该类群及其所在的属与麻黄的现代类群作对比研究后发现,该种植物的繁殖器官的特征完全符合麻黄属的特征,因此将该类群转移到麻黄属中作为新组合对待。另外,根据前人对该种在种加词的命名上的修改,我们将该新组合命名为Ephedra cheniae。 在调查该生物群中的买麻藤植物时,我们发现在部分化石类群中出现了前人没有记载过的新性状,比如在麻黄科类植物中发现了互生的分枝方式,并据此命名一个新的单种属Alloephedra xingxuei。为了探讨互生分枝这一性状对于麻黄科的分类意义,我们调查了国内外不少标本馆中的标本,并在野外做了取样统计。结果发现,在不少现代麻黄的枝条上都出现了不同程度的分枝发育不均衡,表现为在同一节上对生的两个分枝中一侧分枝能够正常发育而另一侧发育迟缓甚至不发育,这种不均衡的发育造成了在现代麻黄中出现了类似互生的分枝状况。在整理前人对麻黄分枝方式研究的基础上,结合我们对野外类群形态学性状的调查,我们认为由于在同一节上对生的两个分枝中一侧延迟或不发育而引起的类似互生的性状是较为广泛存在的,它不应该成为属一级的分类依据,而只能作为种一级的分类依据对待。因此我们将AHoephedra xingxuei转移到麻黄属中作为新组合Ephedra xingxuei处理。 除此之外,我们也发现了不少其他的买麻藤目化石标本,在对买麻藤目以往的化石记录了解以及对这些标本形态学性状把握的基础上,我们将这些新发现的化石标本放置在麻黄科麻黄属中作为新种对待,并根据其叶片以及苞片的特征分别将他们命名为披针叶麻黄(Ephedra lanceoleta)、裂叶麻黄(Ephedra divisa),卵叶麻黄(Ephedra ovata)以及双苞麻黄(Ephedra bibracta)。 与此同时,我们也发现了保存完好的被子植物的化石标本。该标本中具有5个离生的心皮、分枝方式兼具侧生和二叉分枝两种、并具有多裂的叶片。在辽西地区同时代发现的被子植物早期类型共有两个,分别是Archaefructus和Hyrcantha。其中前者具有许多个离生的螺旋状排列在可育枝的顶端1cm内的子房/心皮,而后者只有2-4个子房/心皮。在对我们新发现的化石标本与这两个被子植物的早期类型在叶片形态、分枝式样、果实大小、果实构成、果实排布、心 皮数目等形态学特征对比的基础上,我们认为新的化石标本描述了一个被子植物早期类群的新形态,并根据其具有五个心皮以及多裂的叶片的特征,命名为裂叶文采果Wentsaia divisa gen.&sp. nov。 由于我们有幸能在辽西同时发现了买麻藤植物的化石标本和被子植物早期类型的标本,这就给了我们一个讨论二者在起源关系方面的机会。在对二者的营养器官特征、繁殖器官结构组成、繁殖器官性别构成以及对二者生活环境理解进行对比的基础上,我们认为,买麻藤目植物的早期类型与被子植物的早期类型之间存在相关性。但是就目前的证据而言,尚无法推测二者之间是否存在性状上的演化关系,而该问题的解决需要更多的化石证据的积累。
Resumo:
The fluvio-lacustrine sequence in the Nihewan Basin is an important archive of late Pliocene-Pleistocene climate and environment changes in temperate northern China, which provides excellent sources of early human settlements in high latitude East Asia. The recent years have witnessed a considerable progress in the paleomagnetic dating of its stratigraphy, which has notably increased our understanding of a series of important issues such as the early human occupation in the Old World, the infilling history of the Nihewan Basin, and the chronological sequence of the Nihewan faunas. Up to now, the long-term paleoenvironmental changes directly retrieved from this basin, which might influence the evolution and expansion of early humans in the Nihewan Basin, are still poorly constrained, although several paleoclimatic records have been retrieved from this area. In this study, a combined mineral-magnetic and geochemical investigation was carried out on the fluvio-lacustrine sequence from the Dachangliang section at the eastern margin of the basin in order to reveal its rock magnetic and environmental magnetic characteristics and its implications for early human evolution in East Asia. The major findings and conclusions are listed as the following: First, there is an increased cooling coupled with an intensified aridification recorded in the fluvio-lacustrine sequence of the Dachangliang section. The cooling is related to an up-section decrease in propensity to chemical weathering as inferred from an increase in low-field susceptibility after cycling to 700 °C. Close to 700 °C, reacting chlorite is providing the iron source for newly formed very fine-grained ferrimagnetic minerals which enhances the susceptibility signal. The reactivity of chlorite after annealing at temperatures above 600 °C is documented with X-ray diffraction. Second, degrees of chemical weathering in the Nihewan Basin are further estimated by clay mineralogy (i.e. chlorite and illite contents and chlorite/illite ratio) and a series of major element proxies (i.e. Na2O/Al2O3 versus K2O/Al2O3 diagram, Al2O3-(CaO + Na2O)-K2O ternary diagram (A-CN-K), chemical index of alteration (CIA), (CaO + Na2O + MgO)/TiO2, (CaO + Na2O + MgO + K2O)/(TiO2 + Al2O3), CaO/Al2O3 and CaO/TiO2). The up-section decrease in propensity to chemical weathering suggested by the aforementioned rock mangetic measurement is further confirmed by these geochemical analyses. Combining the chemical weathering records from the Nihewan Basin, Chinese Loess Plateau, South China Sea and eastern China, we find that the consecutive decreasing trend in chemical weathering intensity during the late Cenozoic is ubiquitous across China. This pattern may result from a long-term decreasing East Asian summer monsoon and increasing East Asian winter monsoon, and thus a consecutive increasing of aridification and cooling in Asia during the Quaternary. Furthermore, the chemical weathering intensity increased from South China to North China during the Quaternary, in line with the decreasing East Asian summer monsoon and increasing East Asian winter monsoon and thus the gradually intensified aridification and cooling from South China to North China. Third, a combined mineral-magnetic and geochemical investigation provides evidences that the large-amplitude alterations of concentration of magnetic minerals mainly result from preservation/dissolution cycles of detrital magnetic minerals in alternately oxic and anoxic depositional environments. The preservation/dissolution model implies that the high-magnetic and low-magnetic cycles of this sedimentary sequence represent glacial and interglacial climate cycles, respectively. This contribute significnatly to our understanding of the link between climate and magnetic properties. Finally, the paleoclimatic implications of these rock magnetic and geochemical characteristics significantly increase our understanding of the general setting of early humans in high northern latitude in East Asia. We propose that the cold and dry climate may have contributed significantly to the expansion and adaptation of early humans, rather than bringing hardship, as is often thought. The relationship between magnetic properties and climate possibly provides valuable information on the climatic context of the Paleolithic sites in the basin, especially whether the occupation occurred during an interglacial or glacial period.