925 resultados para EYES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the efficacy and safety of intravitreal bevacizumab (IVB) in eyes with neovascular glaucoma (NVG) undergoing Ahmed glaucoma valve (AGV) implantation. This was a multicentre, prospective, randomized clinical trial that enrolled 40 patients with uncontrolled neovascular glaucoma that had undergone panretinal photocoagulation and required glaucoma drainage device implantation. Patients were randomized to receive IVB (1.25 mg) or not during Ahmed valve implant surgery. Injections were administered intra-operatively, and 4 and 8 weeks after surgery. After a mean follow-up of 2.25 ± 0.67 years (range 1.5-3 years), both groups showed a significant decrease in IOP (p < 0.05). There was no difference in IOP between groups except at the 18-month interval, when IOP in IVB group was significantly lower (14.57 ± 1.72 mmHg vs. 18.37 ± 1.06 mmHg - p = 0.0002). There was no difference in survival success rates between groups. At 24 months, there was a trend to patients treated with IVB using less antiglaucoma medications than the control group (p = 0.0648). Complete regression of rubeosis iridis was significantly more frequent in the IVB group (80%) than in the control group (25%) (p = 0.0015). Intravitreal bevacizumab may lead to regression of new vessels both in the iris and in the anterior chamber angle in patients with neovascular glaucoma undergoing Ahmed glaucoma valve implantation. There is a trend to slightly lower IOPs and number of medications with IVB use during AGV implantation for neovascular glaucoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-sea fish, defined as those living below 200 m, inhabit a most unusual photic environment, being exposed to two sources of visible radiation: very dim downwelling sunlight and bioluminescence, both of which are, in most cases. maximal at wavelengths around 450-500 nm. This paper summarises the reflective properties of the ocular tapeta often found in these animals the pigmentation of their lenses and the absorption characteristics of their visual pigments. Deepsea tapeta usually appear blue to the human observer. reflecting mainly shortwave radiation. However, reflection in other parts of the spectrum is not uncommon and uneven tapetal distribution across the retina is widespread. Perhaps surprisingly, given the fact that they live in a photon limited environment, the lenses of some deep-sea teleosts are bright yellow, absorbing much of the shortwave part of the spectrum. Such lenses contain a variety of biochemically distinct pigments which most likely serve to enhance the visibility of bioluminescent signals. Of the 195 different visual pigments characterised by either detergent extract or microspectrophotometry in the retinae of deep-sea fishes, cn. 87% have peak absorbances within the range 468-494 nm. Modelling shows that this is most likely an adaptation for the detection of bioluminescence. Around 13% of deep-sea fish have retinae containing more than one visual pigment. Of these, we highlight three genera of stomiid dragonfishes, which uniquely produce far red bioluminescence from suborbital photophores. Using a combination of longwave-shifted visual pigments and in one species (Malacosteus niger) a chlorophyll-related photosensitizer. these fish have evolved extreme red sensitivity enabling them to see their own bioluminescence and giving them a private spectral waveband invisible to other inhabitants of the deep-ocean. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part. the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compound eyes of mantis shrimps, a group of tropical marine crustaceans, incorporate principles of serial and parallel processing of visual information that may be applicable to artificial imaging systems. Their eyes include numerous specializations for analysis of the spectral and polarizational properties of light, and include more photoreceptor classes for analysis of ultraviolet light, color, and polarization than occur in any other known visual system. This is possible because receptors in different regions of the eye are anatomically diverse and incorporate unusual structural features, such as spectral filters, not seen in other compound eyes. Unlike eyes of most other animals, eyes of mantis shrimps must move to acquire some types of visual information and to integrate color and polarization with spatial vision. Information leaving the retina appears to be processed into numerous parallel data streams leading into the central nervous system, greatly reducing the analytical requirements at higher levels. Many of these unusual features of mantis shrimp vision may inspire new sensor designs for machine vision

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the nineteenth century, Latin America and other poor areas of the world received periodical visits from missions of economic experts. This paper analyzes the picture that Hirschman draws of these money doctors, whose main task was to advise on the economic and financial reforms that were deemed necessary for economic development. Hirschman coins the expression `visiting-economist syndrome` to criticize the work done by these money doctors. I discuss whether Hirschman, as a money doctor himself, was able to acquire immunity from the disease he feared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three experiments explored the effectiveness of continuous auditory displays, or sonifications, for conveying information about a simulated anesthetized patient's respiration. Experiment 1 established an effective respiratory sonification. Experiment 2 showed an effect of expertise in the use of respiratory sonification and revealed that some apparent differences in sonification effectiveness could be accounted for by response bias. Experiment 3 showed that sonification helps anesthesiologists to maintain high levels of awareness of the simulated patient's state while performing other tasks more effectively than when relying upon visual monitoring of the simulated patient state. Overall, sonification of patient physiology beyond traditional pulse oximetry appears to be a viable and useful adjunct to visual monitors. Actual and potential applications of this research include monitoring in a wide variety of busy critical care contexts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine whether implantation of an intraocular lens (IOL) with an aspheric surface (Akreos AO, Bausch & Lomb Inc) results in reduced ocular aberrations (spherical aberration) and improved Strehl ratio and modulation transfer function (MTF) after cataract surgery. METHODS: In an intraindividual, randomized, double-masked, prospective study of 50 eyes (25 patients) with bilateral cataract, an IOL with modified anterior and posterior surfaces (Akreos AO) was implanted in one eye and a biconvex IOL with spherical surfaces (Akreos Fit, Bausch & Lomb Inc) implanted in the fellow eye. Ocular aberrations, Strehl ratio, and MTF curve with 4.5-, 5.0-, and 6.0-mm pupils were measured with a NIDEK OPD-Scan dynamic retinoscopy aberrometer 3 months after surgery. Uncorrected and corrected distance visual acuity (UDVA and CDVA, respectively) were also measured. RESULTS: No statistically significant difference was noted between eyes in postoperative UDVA and CDVA at 1 month. At 3 months, the Akreos AO IOL group obtained statistically significant lower values of higher order and spherical aberrations with 4.5-, 5.0-, and 6.0-mm pupil diameters than the Akreos Fit IOL group (P<.05). The value of Strehl ratio was statistically significantly higher in eyes with the Akreos AO IOL for 4.5- and 6.0-mm pupils (P<.05). The MTF curve was better in the Akreos AO IOL group in 4.5-, 5.0-, and 6.0-mm pupils (P<.05). CONCLUSIONS: The aspheric Akreos AO IOL induced significantly less spherical aberration than the Akreos Fit IOL for 4.5-, 5.0-, and 6.0-mm pupils. Modulation transfer function and Strehl ratio were also better in eyes implanted with the Akreos AO IOL than the Akreos Fit. [J Refract Surg. 2011;27(4):287-292.] doi:10.3928/1081597X-20100714-01

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The world's deep oceans are home to a number of teleosts with asymmetrical or tubular eyes. These immobile eyes possess large spherical lenses and subtend a large binocular visual field directed either dorsally or rostrally. Derived from a lateral non-tubular eye, the tubular eye is comprised of a thick main retina, subserving the rostrally or dorsally directed binocular visual field, and a thin accessory retina subserving, the lateral, monocular visual field. The main retina is thought to receive a focussed image, while the accessory retina is too close to the lens for a focussed image to be received. Several species also possess retinal diverticula, which are small evaginations of differentiated retina located in the rostrolateral wall of the eye and thought to increase the visual field. In order to investigate the spatial resolving power of these retinae (main, accessory and diverticulum), the distribution of cells within the ganglion cell layer was analysed from retinal wholemounts and sectioned material in ten species representing four genera. In all species, the main retina possesses a marked increase in cell density towards a specialised retinal region (area centralis), with a centro-peripheral gradient range between 7.1 and 60:1 and a peak density range of between 30 and 55 x 10(3) cells per mm(2). The accessory retinae and the transitional zone between the main and accessory retinae possess relatively low cell densities (between 1 and 10 x 10(3) cells per mm(2)) and lack an area centralis. Retinal diverticula examined in four species possess mean ganglion cell densities of between 7.2 and 109.4 x 10(3) cells per mm(2). Analyses of soma areas show that the ganglion cell layer of most species possesses cells with areas in a range of 8.0 to 15.4 mu m(2) in the main retina and between 15.1 and 17.4 mu m(2) in the accessory retina. The peak spatial resolving power of the main retina of the ten species varies from 4.1 to 9.1 cycles per degree. The positions of the retinal areae centrales relative to each species' binocular visual field are discussed in relation to what is known of feeding behaviour of these fishes in the deep-sea.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To compare the ability of Subjective assessment of optic nerve head (ONH) and retinal nerve fiber layer (RNFL) by general ophthalmologists and by a glaucoma expert with objective measurements by optical coherence tomography (Stratus OCT, Carl Zeiss Meditec Inc), confocal scanning laser ophthalmoscope (HRT III; Heidelberg Engineering, Heidelberg. Germany), and scanning laser polarimetry (GDx enhanced corneal compensation; Carl Zeiss Meditec Inc, Dublin, CA) in discriminating glaucomatous and normal eyes. Methods: Sixty-one glaucomatous and 57 normal eyes or 118 subjects Were included in the study. Three independent general ophthalmologists and I glaucoma expert evaluated ONH stereo-photographs. Receiver operating characteristic curves were constructed for each imaging technique and sensitivity at fixed specificity was estimated. Comparisons or areas under these curves (aROCs) and agreement (k) were determined between stereophoto grading and best parameter from each technique. Results: Best parameter from each technique showed larger aROC (Stratus OCT RNFL 0.92; Stratus OCT ONH vertical integrated area = 0.86; Stratus OCT macular thickness = 0.82; GDx enhanced corneal compensation = 0.91, HRT3 global cup-to-disc ratio = 0.83; HRT3 glaucoma probability score numeric area score 0.83) compared with stereophotograph grading by general ophthalmologists (0.80) in separating glaucomatous and normal eyes. Glaucoma expert stereophoto grading provided equal or larger aROC (0.92) than best parameter of each computerized imaging device. Stereophoto evaluated by a glaucoma expert showed better agreement with best parameter of each quantitative imaging technique in classifying eyes either as glaucomatous or normal compared with stereophoto grading by general ophthalmologists, The combination Of Subjective assessment of the optic disc by general ophthalmologists with RNFL objective parameters improved identification of glaucoma patients in a larger proportion than the combination of these objective parameters with Subjective assessment of the optic disc by a glaucoma expert (29.5% vs. 19.7%, respectively). Conclusions: Diagnostic ability of all imaging techniques showed better performance than subjective assessment of the ONH by general ophthalmologists, but not by It glaucoma expert, Objective RNFL measurements may provide improvement in glaucoma detection when combined with subjective assessment of the optic disc by general ophthalmologists or by a glaucoma expert.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate rates of visual field progression in eyes with optic disc hemorrhages and the effect of intraocular pressure (IOP) reduction on these rates. Design: Observational cohort study. Participants: The study included 510 eyes of 348 patients with glaucoma who were recruited from the Diagnostic Innovations in Glaucoma Study (DIGS) and followed for an average of 8.2 years. Methods: Eyes were followed annually with clinical examination, standard automated perimetry visual fields, and optic disc stereophotographs. The presence of optic disc hemorrhages was determined on the basis of masked evaluation of optic disc stereophotographs. Evaluation of rates of visual field change during follow-up was performed using the visual field index (VFI). Main Outcome Measures: The evaluation of the effect of optic disc hemorrhages on rates of visual field progression was performed using random coefficient models. Estimates of rates of change for individual eyes were obtained by best linear unbiased prediction (BLUP). Results: During follow-up, 97 (19%) of the eyes had at least 1 episode of disc hemorrhage. The overall rate of VFI change in eyes with hemorrhages was significantly faster than in eyes without hemorrhages (-0.88%/year vs. -0.38%/year, respectively, P < 0.001). The difference in rates of visual field loss pre- and post-hemorrhage was significantly related to the reduction of IOP in the post-hemorrhage period compared with the pre-hemorrhage period (r = -0.61; P < 0.001). Each 1 mmHg of IOP reduction was associated with a difference of 0.31%/year in the rate of VFI change. Conclusions: There was a beneficial effect of treatment in slowing rates of progressive visual field loss in eyes with optic disc hemorrhage. Further research should elucidate the reasons why some patients with hemorrhages respond well to IOP reduction and others seem to continue to progress despite a significant reduction in IOP levels. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references. Ophthalmology 2010; 117: 2061-2066 (C) 2010 by the American Academy of Ophthalmology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the safety and efficacy of corneal collagen crosslinking (CXL) in patients with painful pseudophakic bullous keratopathy (PBK). SETTING: University of Sao Paulo, Sao Paulo and Sadalla Amin Ghanem Eye Hospital, Joinville, Santa Catarina, Brazil. METHODS: This prospective study included consecutive eyes with PBK that had CXL. After a 9.0 mm epithelial removal, riboflavin 0.1% with dextran 20% was applied for 30 minutes followed by ultraviolet-A irradiation (370 nm, 3 mW/cm(2)). Therapeutic contact lenses were placed for 1 week. Corneal transparency, central corneal thickness (CCT), and ocular pain were assessed preoperatively and 1 and 6 months postoperatively. Statistical analysis was by paired t tests. RESULTS: Fourteen patients (14 eyes) with a mean age 71.14 years +/- 11.70 (SD) (range 53 to 89 years) were enrolled. Corneal transparency was better in all eyes 1 month after surgery. At 6 months, corneal transparency was similar to preoperative levels (P = .218). The mean CCT was 747 mu m preoperatively and 623 mu m at 1 month; the decrease was statistically significant (P<.001). At 6 months, the mean CCT increased to 710 mu m, still significantly thinner than preoperatively (P = .006). Pain scores at 6 months were not significantly different than preoperatively (P = .066). CONCLUSIONS: Corneal CXL significantly improved corneal transparency, corneal thickness, and ocular pain 1 month postoperatively. However, it did not seem to have a long-lasting effect in decreasing pain and maintaining corneal transparency in patients with PBK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE. To evaluate the relationship between pattern electroretinogram (PERG) amplitude, macular and retinal nerve fiber layer (RNFL) thickness by optical coherence tomography (OCT), and visual field (VF) loss on standard automated perimetry (SAP) in eyes with temporal hemianopia from chiasmal compression. METHODS. Forty-one eyes from 41 patients with permanent temporal VF defects from chiasmal compression and 41 healthy subjects underwent transient full-field and hemifield (temporal or nasal) stimulation PERG, SAP and time domain-OCT macular and RNFL thickness measurements. Comparisons were made using Student`s t-test. Deviation from normal VF sensitivity for the central 18 of VF was expressed in 1/Lambert units. Correlations between measurements were verified by linear regression analysis. RESULTS. PERG and OCT measurements were significantly lower in eyes with temporal hemianopia than in normal eyes. A significant correlation was found between VF sensitivity loss and fullfield or nasal, but not temporal, hemifield PERG amplitude. Likewise a significant correlation was found between VF sensitivity loss and most OCT parameters. No significant correlation was observed between OCT and PERG parameters, except for nasal hemifield amplitude. A significant correlation was observed between several macular and RNFL thickness parameters. CONCLUSIONS. In patients with chiasmal compression, PERG amplitude and OCT thickness measurements were significant related to VF loss, but not to each other. OCT and PERG quantify neuronal loss differently, but both technologies are useful in understanding structure-function relationship in patients with chiasmal compression. (ClinicalTrials.gov number, NCT00553761.) (Invest Ophthalmol Vis Sci. 2009; 50: 3535-3541) DOI:10.1167/iovs.08-3093