983 resultados para EXTENDED BASIS-SETS
Resumo:
The Generator Coordinate Hartree-Fock (GCHF) method is applied to generate extended (20s14p), (30s19p13d), and (31s23p18d) Gaussian basis sets for the 0, Mn, and La atoms, respectively. The role of the weight functions (WFs) in the assessment of the numerical integration range of the GCHF equations is shown. These basis sets are then contracted to [5s3p] and [11s6p6d] for 0 and Mn atoms, respectively, and [17s11p7d] for La atom by a standard procedure. For quality evaluation of contracted basis sets in molecular calculations, we have accomplished calculations of total and orbital energies in the Hartree-Fock-Roothaan (HFR) method for (MnO1+)-Mn-5 and (LaO1+)-La-1 fragments. The results obtained with the contracted basis sets are compared with values obtained with the extended basis sets. The addition of one d polarization function in the contracted basis set for 0 atom and its utilization with the contracted basis sets for Mn and La atoms leads to the calculations of dipole moment and total atomic charges of perovskite (LaMnO3). The calculations were performed at the HFR level with the crystal [LaMnO3](2) fragment in space group C-2v the values of dipole moment, total energy, and total atomic charges showed that it is reasonable to believe that LaMnO3 presents behaviour of piezoelectric material. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The Generator Coordinate Hartree-Fock (GCHF) method is employed to design 16s, 16s10p, 24s17p13d, 25s17p13d, and 26s17p Gaussian basis sets for the H ((2)S), O ((3)P), O(2-) ((1)S), Cr(3+) ((4)F), Cr(4+) ((3)F), and Cr(6+) ((1)S) atomic species. These basis sets are then contracted to (4s) for H ((2)S), (6s4p) for O ((3)P), and O(2-) ((1)S), (986p3d) for Cr(3+) ((4)F), (10s8p3d) for Cr(4+) ((3)F), and (13s7p) for Cr(6+) (1S) by a standard procedure. For evaluation of the quality of those basis sets in molecular calculations, we have accomplished studies of total and orbital (HOMO and HOMO-1) energies at the HF-Roothaan level for the molecular species of our interest. The results obtained with the contracted basis sets are compared to the values obtained with our extended basis sets and to the standard 6-311G basis set from literature. Finally, the contracted basis sets are enriched with polarization function and then utilized in the theoretical interpretation of IR-spectrum of hexaaquachromium (III) ion, [Cr(H(2)O)(6)](3+), tetraoxochromium (IV) ion, [CrO(4)](4-), and tetraoxochromium (VI) ion, [CrO(4)](2-). The respective theoretical harmonic frequencies and IR-intensities were computed at the density functional theory (DFT) level. In the DFT calculations we employed the Becke's 1988 functional using the LYP correlation functional. The comparison between the results obtained and the corresponding experimental values indicates a very good description of the IR-spectra of the molecular ions studied, and that the GCHF method is still a legitimate alternative for selection of Gaussian basis sets. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations. (C) 2016 AIP Publishing LLC.
Resumo:
Density functional calculations, using B3LPY/6-31G(d) methods, have been used to investigate the conformations and vibrational (Raman) spectra of three short-chain fatty acid methyl esters (FAMEs) with the formula CnH2nO2 (n = 3-5). In all three FAMEs, the lowest energy conformer has a simple 'all-trans' structure but there are other conformers, with different torsions about the backbone, which lie reasonably close in energy to the global minimum. One result of this is that the solid samples we studied do not appear to consist entirely of the lowest energy conformer. Indeed, to account for the 'extra' bands that were observed in the Raman data but were not predicted for the all-trans conformer, it was necessary to add-in contributions from other conformers before a complete set of vibrational assignments could be made. Provided this was done, the agreement between experimental Raman frequencies and 6-31G(d) values (after scaling) was excellent, RSD = 12.6 cm(-1). However, the agreement between predicted and observed intensities was much less satisfactory. To confirm the validity of the approach followed by the 6-3 1 G(d) basis set, we used a larger basis set, Sadlej pVTZ, and found that these calculations gave accurate Raman intensities and simulated spectra (summed from two different conformers) that were in quantitative agreement with experiment. In addition, the unscaled Sadlej pVTZ, and the scaled 6-3 1 G(d) calculations gave the same vibrational mode assignments for all bands in the experimental data. This work provides the foundation for calculations on longer-chain FAMEs (which are closer to those found as triglycerides in edible fats and oils) because it shows that scaled 6-3 1 G(d) calculations give equally accurate frequency predictions, and the same vibrational mode assignments, as the much more CPU-expensive Sadlej pVTZ basis set calculations.
Resumo:
Reduced-size polarized (ZmPolX) basis sets are developed for the second-row atoms X = Si, P, S, and Cl. The generation of these basis sets follows from a simple physical model of the polarization effect of the external electric field which leads to highly compact polarization functions to be added to the chosen initial basis set. The performance of the ZmPolX sets has been investigated in calculations of molecular dipole moments and polarizabilities. Only a small deterioration of the quality of the calculated molecular electric properties has been found. Simultaneously the size of the present reduced-size ZmPolX basis sets is about one-third smaller than that of the usual polarized (PolX) sets. This reduction considerably widens the range of applications of the ZmPolX sets in calculations of molecular dipole moments, dipole polarizabilities, and related properties.
Resumo:
Relativistic density functional theory is widely applied in molecular calculations with heavy atoms, where relativistic and correlation effects are on the same footing. Variational stability of the Dirac Hamiltonian is a very important field of research from the beginning of relativistic molecular calculations on, among efforts for accuracy, efficiency, and density functional formulation, etc. Approximations of one- or two-component methods and searching for suitable basis sets are two major means for good projection power against the negative continuum. The minimax two-component spinor linear combination of atomic orbitals (LCAO) is applied in the present work for both light and super-heavy one-electron systems, providing good approximations in the whole energy spectrum, being close to the benchmark minimax finite element method (FEM) values and without spurious and contaminated states, in contrast to the presence of these artifacts in the traditional four-component spinor LCAO. The variational stability assures that minimax LCAO is bounded from below. New balanced basis sets, kinetic and potential defect balanced (TVDB), following the minimax idea, are applied with the Dirac Hamiltonian. Its performance in the same super-heavy one-electron quasi-molecules shows also very good projection capability against variational collapse, as the minimax LCAO is taken as the best projection to compare with. The TVDB method has twice as many basis coefficients as four-component spinor LCAO, which becomes now linear and overcomes the disadvantage of great time-consumption in the minimax method. The calculation with both the TVDB method and the traditional LCAO method for the dimers with elements in group 11 of the periodic table investigates their difference. New bigger basis sets are constructed than in previous research, achieving high accuracy within the functionals involved. Their difference in total energy is much smaller than the basis incompleteness error, showing that the traditional four-spinor LCAO keeps enough projection power from the numerical atomic orbitals and is suitable in research on relativistic quantum chemistry. In scattering investigations for the same comparison purpose, the failure of the traditional LCAO method of providing a stable spectrum with increasing size of basis sets is contrasted to the TVDB method, which contains no spurious states already without pre-orthogonalization of basis sets. Keeping the same conditions including the accuracy of matrix elements shows that the variational instability prevails over the linear dependence of the basis sets. The success of the TVDB method manifests its capability not only in relativistic quantum chemistry but also for scattering and under the influence of strong external electronic and magnetic fields. The good accuracy in total energy with large basis sets and the good projection property encourage wider research on different molecules, with better functionals, and on small effects.
Resumo:
New basis sets of the atomic natural orbital (ANO) type have been developed for the lanthanide atoms La-Lu. The ANOs have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive ions, and the atom in an electric field. Scalar relativistic effects are included through the use of a Douglas-Kroll-Hess Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second-order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies and some excitation energies. Computed ionization energies have an accuracy better than 0.1 eV in most cases. Two molecular applications are inluded as illustration: the cerium diatom and the LuF3 molecule. In both cases it is shown that 4f orbitals are not involved in the chemical bond in contrast to an earlier claim for the latter molecule.
Resumo:
Prolapse-free basis sets suitable for four-component relativistic quantum chemical calculations are presented for the superheavy elements UP to (118)Uuo ((104)Rf, (105)Db, (106)Sg, (107)Bh, (108)Hs, (109)Mt, (110)Ds, (111)Rg, (112)Uub, (113)Uut, (114)Uuq, (115)Uup, (116)Uuh, (117)Uus, (118)Uuo) and Lr-103. These basis sets were optimized by minimizing the absolute values of the energy difference between the Dirac-Fock-Roothaan total energy and the corresponding numerical value at a milli-Hartree order of magnitude, resulting in a good balance between cost and accuracy. Parameters for generating exponents and new numerical data for some superheavy elements are also presented. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The approach called generator coordinate Hartree-Fock (GCHF) method is used in the selection of Gaussian basis set [25s18p for O ((3)p), 31s21p14d for Mn (S-6), and 33s22p16d9f for Pr ((4)J)] for atoms. The role of the weight functions in the assessment of the numerical integration range of the GCHF equations is shown. These basis sets are contracted to (25s18p/9s5p), (31s21p14d/9s6p4d), and (33s22pl6d9f118sl2p5d3f) by segmented contraction scheme of Dunning and they are utilized in calculations of Restricted-Open-HF (ROHF) Total and Orbital energies of the (MnO+1)-Mn-3 and (PrO+1)-Pr-1 fragments, to evaluate their quality in molecular studies. The addition of one d polarization function in the contracted (9s5p) basis set for O(P-3) atom and their application with the contracted (9s6p4d), (18s21p5d3f) basis sets for Mn (S-6) and Pr-Pr ((4)j) atoms lead to the electronic structure study of PrMnO3. The dipole moment, the total energy, and total atomic charges properties were calculated and were carried out at ROHF level with the [PrMnO3](2) fragment. The calculated values show that PrMnO3 does not present piezoelectric properties. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The scheme named generator coordinate Hartree-Fock method (GCHF) is used to build (22s14p) and (33s22p16d9f) gaussian basis sets to S ((3)P) and Pt ((3)D) atoms, respectively. Theses basis sets are contracted to [13s10p] and [19s13p9d5f] through of Dunning's segmented contraction scheme and are enriched with d and g polarization functions, [13s10p1d] and [19s13p9d5flg]. Finally, the [19s13p9d5f1g] basis Set to Pt ((3)D) was supplemented with s and d diffuse functions, [20s13p10d5flg], and used in combination with [13s10p1d] to study the effects of adsorption of S ((3)D) atom on a pt ((3)D) atom belonged to infinite Pt (200) surface. Atom-atom overlap population, bond order, and infrared spectrum of [pt(_)S](2 -) were calculated properties and were carried out at Hartree-Fock-Roothaan level. The results indicate that the process of adsorption of S ((3)P) on pt ((3)D) in the infinite Pt (200) surface is mainly caused by a strong contribution of sigma between the 3p(z) orbital of S ((3)P) and the 6s orbital of pt ((3)D). (c) 2004 Elsevier B.V. All rights reserved.