897 resultados para EXERCISE PERFORMANCE
Resumo:
It is well known that carbohydrate (CHO) supplementation can improve performance in endurance exercises through several mechanisms such as maintenance of glycemia and sparing endogenous glycogen as well as the possibility of a central nervous-system action. Some studies have emerged in recent years in order to test the hypothesis of ergogenic action via central nervous system. Recent studies have demonstrated that CHO mouth rinse can lead to improved performance of cyclists, and this may be associated with the activation of brain areas linked to motivation and reward. These findings have already been replicated in other endurance modalities, such as running. This alternative seems to be an attractive nutritional tool to improve endurance exercise performance.
Resumo:
Aims. - The present study evaluated the effects of BCAA supplementation on exercise performance of pregnant rats. Methods. - In order to assess these effects, Wistar rats were divided into four groups: sedentary not-supplemented (SNS, n = 8); sedentary supplemented (SS, n = 8); trained not-supplemented (TNS, n = 8) and trained supplemented (TS, n = 8). All groups were submitted to the endurance test until exhaustion (ET) and post-effort lactate (PEL) determination before pregnancy (ET-B and PEL-B) and at the 19th day of pregnancy (ET-19 and PEL-19). Results. - The endurance training significantly increased the ET time to exhaustion (p<0.05). Regardless of BCAA supplementation, both endurance trained groups (TS and TNS) showed a longer time to exhaustion, assessed by ET, compared with the sedentary groups (SS and SNS) (p < 0.05). In the TNS, ET-19 time to exhaustion decreased when compared with the period before pregnancy. On the other hand, ET-19 time to exhaustion was not affected in the TS at the end of the pregnancy period. In addition, TS showed a marked PEL-19 reduction when compared with PEL-B. The data presented herein suggest that BCAA supplementation plays an ergogenic role in the maintenance of exercise performance during pregnancy in rats. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
ARTIOLI, G. G., B. GUALANO, A. SMITH, J. STOUT, and A. H. LANCHA, JR. Role of beta-Alanine Supplementation on Muscle Carnosine and Exercise Performance. Med. Sci. Sports Exerc., Vol. 42, No. 6, pp. 1162-1173, 2010. In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids L-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or (V) over dotO(2max), some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.
Resumo:
Background: Patients with idiopathic pulmonary fibrosis (IPF) present an important ventilatory (imitation reducing their exercise capacity. Non-invasive ventilatory support has been shown to improve exercise capacity in patients with obstructive diseases; however, its effect on IPF patients remains unknown. Objective: The present study assessed the effect of ventilatory support using proportional, assist ventilation (PAV) on exercise capacity in patients with IPF. Methods: Ten patients (61.2 +/- 9.2 year-old) were submitted to a cardiopulmonary exercise testing, plethysmography and three submaximal. exercise tests (60% of maximum load): without ventilatory support, with continuous positive airway pressure (CPAP) and PAV. Submaximal tests were performed randomly and exercise capacity, cardiovascular and ventilatory response as well as breathlessness subjective perception were evaluated. Lactate plasmatic levels were obtained before and after submaximal. exercise. Results: Our data show that patients presented a limited exercise capacity (9.7 +/- 3.8 mL O(2)/kg/min). Submaximal. test was increased in patients with PAV compared with CPAP and without ventilatory support (respectively, 11.1 +/- 8.8 min, 5.6 +/- 4.7 and 4.5 +/- 3.8 min; p < 0.05). An improved arterial oxygenation and lower subjective perception to effort was also observed in patients with IPF when exercise was performed with PAV (p < 0.05). IPF patients performing submaximal exercise with PAV also presented a lower heart rate during exercise, although systolic and diastolic pressures were not different among submaximal tests. Our results suggest that PAV can increase exercise tolerance and decrease dyspnoea and cardiac effort in patients with idiopathic pulmonary fibrosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Supplementation with propionyl-L-carnitine (PLC) may be of use in improving the exercise capacity of people with peripheral arterial disease. Methods: After a 2-wk exercise familiarization phase, seven subjects displaying intermittent claudication were studied over a 12-wk period consisting of three 4-wk phases, baseline (B), supplementation (S), and placebo (P). PLC was supplemented at 2 g(.)d(-1), and subjects were blinded to the order of supplementation. Unilateral calf strength and endurance were assessed weekly. Walking performance was assessed at the end of each phase using an incremental protocol, during which respiratory gases were collected. Results: Although there was not a significant increase in maximal walking time (similar to 14%) in the whole group, walking time improved to a greater extent than the individual baseline coefficient of variation in four of the seven subjects. The changes in walking performance were correlated with changes in the respiratory exchange ratio both at steady state (r = 0.59) and maximal exercise (r = 0.79). Muscle strength increased significantly from 695 +/- 198 N to 812 +/- 249 N by the end of S. Changes in calf strength from B to S were modestly related to changes in walking performance (r = 0.56). No improvements in calf endurance were detected throughout the study. Conclusions: These preliminary data suggest that, in addition to walking performance, muscle strength can be increased in PAD patients after 4 wk of supplementation with propionyl-L-carnitine.
Resumo:
The general practice of altitude training is widely accepted as a means to enhance sport performance despite a lack of rigorous scientific studies. For example, the scientific gold-standard design of a double-blind, placebo-controlled, cross-over trial has never been conducted on altitude training. Given that few studies have utilised appropriate controls, there should be more scepticism concerning the effects of altitude training methodologies. In this brief review we aim to point out weaknesses in theories and methodologies of the various altitude training paradigms and to highlight the few well-designed studies to give athletes, coaches and sports medicine professionals the current scientific state of knowledge on common forms of altitude training. Another aim is to encourage investigators to design well-controlled studies that will enhance our understanding of the mechanisms and potential benefits of altitude training.
Resumo:
Exercise intolerance due to impaired oxidative metabolism is a prominent symptom in patients with mitochondrial myopathy (MM), but it is still uncertain whether L-carnitine supplementation is beneficial for patients with MM. The aim of our study was to investigate the effects of L-carnitine on exercise performance in MM. Twelve MM subjects (mean age±SD=35.4±10.8 years) with chronic progressive external ophthalmoplegia (CPEO) were first compared to 10 healthy controls (mean age±SD=29±7.8 years) before they were randomly assigned to receive L-carnitine supplementation (3 g/daily) or placebo in a double-blind crossover design. Clinical status, body composition, respiratory function tests, peripheral muscle strength (isokinetic and isometric torque) and cardiopulmonary exercise tests (incremental to peak exercise and at 70% of maximal), constant work rate (CWR) exercise test, to the limit of tolerance [Tlim]) were assessed after 2 months of L-carnitine/placebo administration. Patients with MM presented with lower mean height, total body weight, fat-free mass, and peripheral muscle strength compared to controls in the pre-test evaluation. After L-carnitine supplementation, the patients with MM significantly improved their Tlim (14±1.9 vs 11±1.4 min) and oxygen consumption ( V ˙ O 2 ) at CWR exercise, both at isotime (1151±115 vs 1049±104 mL/min) and at Tlim (1223±114 vs 1060±108 mL/min). These results indicate that L-carnitine supplementation may improve aerobic capacity and exercise tolerance during high-intensity CWRs in MM patients with CPEO.
Resumo:
Objective: To examine the effect of additional cognitive demand on cycling performance in individuals with acquired brain injury (ABI). Design: Prospective observational study. Setting: Rivermead Rehabilitation Centre. Participants: Ten individuals with ABI ( 7 men, 3 women) ( traumatic brain injury 7, tumour 1, stroke 2) and 10 healthy controls ( 6 men, 4 women). Intervention: Individuals were asked to maintain a set cadence during a three-stage incremental cycling test in both single-task ( no additional task) and dual-task ( whilst performing an additional cognitive task) conditions. Results: The ABI group showed a slight slowing in cadence in stages 1 and 3 of the graded exercise test from the single-to the dual-task condition, although this was not significant ( p less than or equal to 0.05). The control group showed no slowing of cadence at any incremental stage. When directly comparing the ABI with the control group, the change in cadence observed in dual-task conditions was only significantly different in stage 3 ( p less than or equal to 0.05). Conclusions: Clinicians should be aware of the possibility that giving additional cognitive tasks ( such as monitoring exercise intensity) while individuals with acquired brain injury are performing exercises may detrimentally affect performance. The effect may be more marked when the individuals are performing exercise at higher intensities.
Resumo:
Contrary to previous research, training may improve exercise performance in a lizard, the brown anole. A brief, two-week training period resulted in increased performance speed and distance before exhaustion in trained lizards. Trained lizards were also able to more effectively use leg glycogen stores, however each of these improvements were not found in lizards treated with alcohol. Liver glycogen concentrations were also lower in alcohol-treated lizards, and patterns of liver glycogen concentrations during recovery indicate some hepatic lactate gluconeogenesis.
Resumo:
The aim of this study was to investigate the effects of preferred and nonpreferred music on exercise distance, Heart Rate (HR), and Rating of Perceived Exertion (RPE) during continuous cycling exercise performed at high intensity Fifteen participants performed five test sessions During two sessions, they cycled with fixed workload on ergometer to determine the Critical Power (Cl') intensity Then, they performed three more sessions cycling at CP intensity listening to Preferred Music, listening to Nonpreferred Music, and No Music The HR responses in the exercise sessions did not differ among all conditions However, the RPE was higher for Nonpreferred Music than in the other conditions The performance under Preferred Music (9 8 +/- 4 6km) was greater than under Nonpreferred Music (7 1 +/- 3 5km) conditions Therefore, listening to Preferred Music during continuous cycling exercise at high intensity can Increase the exercise distance, and individuals listening to Nonpreferred Music can perceive more discomfort caused by the exercise
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)