982 resultados para EXERCISE INCREASES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense resistance exercise causes mechanical loading of skeletal muscle, followed by muscle adaptation. Chemotactic factors likely play an important role in these processes. Purpose We investigated the time course of changes in the expression and tissue localization of several key chemotactic factors in skeletal muscle during the early phase of recovery following resistance exercise. Methods Muscle biopsy samples were obtained from vastus lateralis of eight untrained men (22+-0.5 yrs) before and 2, 4 and 24 h after three sets of leg press, squat and leg extension at 80% 1 RM. Results Monocyte chemotactic protein-1 (95×), interleukin-8 (2,300×), IL-6 (317×), urokinase-type plasminogen activator (15×), vascular endothelial growth factor (2×) and fractalkine (2.5×) mRNA was significantly elevated 2 h post-exercise. Interleukin-8 (38×) and interleukin-6 (58×) protein was also significantly elevated 2 h post-exercise, while monocyte chemotactic protein-1 protein was significantly elevated at 2 h (22×) and 4 h (21×) post-exercise. Monocyte chemotactic protein-1 and interleukin-8 were expressed by cells residing in the interstitial space between muscle fibers and, in some cases, were co-localized with CD68+ macrophages, PAX7+ satellite cells and blood vessels. However, the patterns of staining were inconclusive and not consistent. Conclusion In conclusion, resistance exercise stimulated a marked increase in the mRNA and protein expression of various chemotactic factors in skeletal muscle. Myofibers were not the dominant source of these factors. These findings suggest that chemotactic factors regulate remodeling/adaptation of skeletal muscle during the early phase of recovery following resistance exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytokines (IL-6, IL-10, and TNF-alpha) are increased after exhaustive exercise in the retroperitoneal adipose tissue (RPAT) and mesenteric adipose tissue (MEAT). An exhaustive acute exercise protocol induces inflammation in adipose tissue that lasts 6 h after the exercise has ended. It is well-established that this protocol increases circulating plasma levels of non-esterified fatty acids (NEFAs) and lipopolysaccharides (LPS), compounds that are important in stimulating signaling via toll like receptor-4 (TLR-4) in different type cells. In the present study, we investigated the regulation of TLR-4 and DNA-binding of nuclear factor-kappa Bp65 (NF-kappa Bp65) in different depots of adipose tissue in rats after exhaustive exercise. Rats were killed by decapitation immediately (E0 group, n = 6), 2 (E2 group, n = 6), and 6 h (E6 group, n = 6) after the exhaustive exercise, which consisted of running on a treadmill (approximately 70% V(O2max)) for 50 min and then running at an elevated rate that increased at 1 m/min, until exhaustion. The control group (C group, n = 6) was not subjected to exercise. In RPAT, TLR-4, MYD-88, and IkB alpha increased in the E2 group after exercise. MYD-88 and TRAF6 remained increased in the E6 group in comparison with the control group. DNA-binding of NF-kappa Bp65 was not altered. In MEAT, TLR-4, MYD-88, TRAF6, and DNA-binding of NF-kappa Bp65 were increased only in the E6 group. In conclusion, we have shown that increases in pro-inflammatory cytokines in adipose tissue pads after exhaustive exercise may be mediated via TLR-4 signaling, leading to increases in NF-kappa Bp65 binding to DNA in MEAT. J. Cell. Physiol. 226: 1604-1607, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acute bout of exercise increases skeletal muscle glucose uptake, improves glucose homeostasis and insulin sensitivity, and enhances muscle oxidative capacity. Recent studies have shown an association between these adaptations and the energy-sensing 5' AMP-activated protein kinase (AMPK), the activity of which is increased in response to exercise. Activation of AMPK has been associated with enhanced expression of key metabolic proteins such as GLUT-4, hexokinase II (HKII), and mitochondrial enzymes, similar to exercise. It has been hypothesized that AMPK might regulate gene and protein expression through direct interaction with the nucleus. The purpose of this study was to determine if nuclear AMPK α2 content in human skeletal muscle was increased by exercise. Following 60 min of cycling at 72 +/- 1% of VO2peak in six male volunteers (20.6 +/- 2.1 years; 72.9 +/- 2.1 kg; VO2peak = 3.62 +/- 0.18 l/min), nuclear AMPK α2 content was increased 1.9 +/- 0.4-fold (P = 0.024). There was no change in whole-cell AMPK α2 content or AMPK α2 mRNA abundance. These results suggest that nuclear translocation of AMPK might mediate the effects of exercise on skeletal muscle gene and protein expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence suggests that heat shock proteins (Hsps) may have an important systemic role as a signal to activate the immune system. Since acute exercise is known to induce Hsp72 (the inducible form of the 70-kDa family of Hsp) in a variety of tissues including contracting skeletal muscle, we hypothesized that such exercise would result in the release of Hsp72 from stressed cells into the blood. Six humans (5 males, 1 female) ran on a treadmill for 60 minutes at a workload corresponding to 70% of their peak oxygen consumption. Blood was sampled from a forearm vein at rest (R), 30 minutes during exercise, immediately postexercise (60 minutes), and 2, 8, and 24 hours after exercise. These samples were analyzed for serum Hsp72 protein. In addition, plasma creatine kinase (CK) was measured at these time points as a crude marker of muscle damage. With the exception of the sample collected at 30 minutes, muscle biopsies (n = 5 males) were also obtained from the vastus lateralis at the time of blood sampling and analyzed for Hsp72 gene and protein expression. Serum Hsp72 protein increased from rest, both during and after exercise (0.13 0.10 vs 0.87 ± 0.24 and 1.02 ± 0.41 ng/mL at rest, 30 and 60 minutes, respectively, P < 0.05, mean SE). In addition, plasma CK was elevated (P < 0.05) 8 hours postexercise. Skeletal muscle Hsp72 mRNA expression increased 6.5-fold (P < 0.05) from rest 2 hours postexercise, and although there was a tendency for Hsp72 protein expression to be elevated 2 and 8 hours following exercise compared with rest, results were not statistically significant. The increase in serum Hsp72 preceded any increase in Hsp72 gene or protein expression in contracting muscle, suggesting that Hsp72 was released from other tissues or organs. This study is the first to demonstrate that acute exercise can increase Hsp72 in the peripheral circulation, suggesting that during stress these proteins may indeed have a systemic role.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes is quickly reaching epidemic proportions, with 216 million people worldwide predicted to be diagnosed with the disease by 2010. While it appears that the expression of the insulin responsive glucose transporter isoform 4 (GLUT4) is not reduced in diabetic populations, overexpression of GLUT4 exclusively in muscle enhances insulin action and improves glucose homeostasis. Consequently, understanding the regulation of GLUT4 expression is considered important in identifying potential therapeutic targets for the treatment and management of insulin resistance and related disorders such as type 2 diabetes. Using transgenic mice, we have identified two conserved regions on the GLUT4 gene promoter that are required for normal skeletal muscle GLUT4 expression. The first region contains a binding site for the myocyte enhancer factor 2 (MEF2) transcription factor, between –464 and –473 bp, and it appears that a MEF2A/D heterodimer binds this sequence. However, this site is not sufficient to support full GLUT4 expression, and another region between –712 and –742 bp, termed Domain 1, is also required. A novel transcription factor, named the GLUT4 enhancer factor (GEF), was found to bind to this region. It appears that MEF2 and GEF physically interact in order to induce GLUT4 expression. A single bout of exercise is sufficient to increase both GLUT4 transcription and mRNA abundance. However, the molecular mechanisms underpinning this response remain largely unexplored, particularly in human skeletal muscle. Therefore, the aim of this study was to determine whether a single, acute bout of exercise increases the DNA-binding activity of both MEF2 and GEF in human skeletal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the study was to determine the effect of a single bout of exercise on GLUT4 gene expression in muscle of patients with type 2 diabetes (T2D) and control subjects, matched for age and body mass index. Nine patients with T2D and nine control subjects performed 60 min of cycling exercise at ∼55% peak power (Wmax). Skeletal muscle biopsies were obtained at baseline, immediately post and 3-h post exercise. GLUT4 mRNA expression increased (p < 0.05) to a similar extent immediately post exercise in control (∼60%) and T2D (∼66%) subjects, and remained elevated (p < 0.05) 3-h post exercise with no differences between groups. Similarly, p-AMP-activated protein kinase, p38 mitogen-activated kinase and proliferator-activated receptor gamma co-activator-alpha mRNA expression were increased (p < 0.05) post exercise, and were not different between the groups. In conclusion, a single bout of exercise increased skeletal muscle GLUT4 mRNA expression in patients with T2D to a similar extent as in control subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intense resistance exercise causes mechanical loading of skeletal muscle, followed by muscle adaptation. Chemotactic factors likely play an important role in these processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Training in rats adapts the portal vein to respond vigorously to sympathetic stimuli even when the animal is re-exposed to exercise. Moreover, changes in the exercise-induced effects of angiotensin II, a potent venoconstrictor agonist, in venous beds remain to be investigated. Therefore, the present study aimed to assess the effects of angiotensin II in the portal vein and vena cava from sedentary and trained rats at rest or submitted to an exercise session immediately before organ bath experiments. We found that training or exposure of sedentary animals to a single bout of running exercise does not significantly change the responses of the rat portal vein to angiotensin II. However, the exposure of trained animals to a single bout of running exercise enhanced the response of the rat portal vein to angiotensin II. This enhancement appeared to be territory-specific because it was not observed in the vena cava. Moreover, it was not observed inendothelium-disrupted preparations and in preparations treated with Nω-nitro-l-arginine methyl esterhydrochloride, indomethacin, BQ-123 or BQ-788. These data indicate that training causes adaptations in the rat portal vein that respond vigorously to angiotensin II even upon re-exposure to exercise. This increased response to angiotensin II requires an enhancement of the vasocontractile influence of endothelin beyond the influence of nitric oxide and vasodilator prostanoids.