945 resultados para EXCITON DIFFUSION
Resumo:
Organic photovoltaic devices with either bulk heterojunction (BHJ) or nanoparticulate (NP) active layers have been prepared from a 1:2 blend of (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) (PDPP-TNT) and the fullerene acceptor, ([6,6]-phenyl C71-butyric acid methyl ester) (PC70BM). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used to investigate the morphology of the active layers of the two approaches. Mild thermal treatment of the NP film is required to promote initial joining of the NPs in order for the devices to function, however the NP structure is retained. Consequently, whereas gross phase segregation of the active layer occurs in the BHJ device spin cast from chloroform, the nanoparticulate approach retains control of the material domain sizes on the length scale of exciton diffusion in the materials. As a result, NP devices are found to generate more than twice the current density of BHJ devices and have a substantially greater overall efficiency. The use of aqueous nanoparticulate dispersions offers a promising approach to control the donor acceptor morphology on the nanoscale with the benefit of environmentally- friendly, solution-based fabrication. © 2014 the Owner Societies.
Resumo:
We report a new organic photovoltaics (OPV) design, a wrapped OPV, which can circumvent both challenges of short exciton diffusion length [1], and low charge carrier mobility [2] of organic semiconductors by orienting the OPV vertically, to capture; manage; guide and use all incident photons and therefore, generate higher current. Resonant light, on being transmitted into a wrapped OPV, makes multiple passes through the photoactive layer and is absorbed completely, thus achieving benefits of thick photoactive layer while maintaining its ultra-thin thickness requirement. The current density generated from a wrapped OPV is twice than that generated by a similar OPV with flat orientation.
Resumo:
A study on self-assembly of anisotropically substituted penta-aryl fullerenes in water has been reported. The penta-phenol-substituted amphiphilic fullerene derivative C60Ph5(OH)(5)],exhibited self-assembled vesicular nanostructures in water under the experimental conditions. The size of the vesicles Was observed to depend upon the kinetics of self-assembly and could be varied from similar to 300 to similar to 70 nm. Our mechanistic study indicated that the self-assembly of C60Ph5(OH)(5) is driven by extensive intermolecular as well as water-mediated hydrogen :bonding along with fullerene-fullerene hydrophobic interaction in water. The cumulative effect of these interactions is responsible for the stability of vesicular structures even on the removal of solvent. The substitution of phenol with anisole resulted in different packing and interaction of the fullerene derivative, as Indicated in the molecular dynamics studies, thus resulting in different self-assembled nanostructures. The hollow vesicles were further encapsulated with a hydrophobic conjugated polymer and water-soluble dye as guest molecules. Such confinement of pi-conjugated polymers in fullerene has significance in bulk heterojunction devices for efficient exciton diffusion.
Resumo:
This work contains 4 topics dealing with the properties of the luminescence from Ge.
The temperature, pump-power and time dependences of the photoluminescence spectra of Li-, As-, Ga-, and Sb-doped Ge crystals were studied. For impurity concentrations less than about 1015cm-3, emissions due to electron-hole droplets can clearly be identified. For impurity concentrations on the order of 1016cm-3, the broad lines in the spectra, which have previously been attributed to the emission from the electron-hole-droplet, were found to possess pump-power and time dependent line shape. These properties show that these broad lines cannot be due to emission of electron-hole-droplets alone. We interpret these lines to be due to a combination of emissions from (1) electron-hole- droplets, (2) broadened multiexciton complexes, (3) broadened bound-exciton, and (4) plasma of electrons and holes. The properties of the electron-hole-droplet in As-doped Ge were shown to agree with theoretical predictions.
The time dependences of the luminescence intensities of the electron-hole-droplet in pure and doped Ge were investigated at 2 and 4.2°K. The decay of the electron-hole-droplet in pure Ge at 4.2°K was found to be pump-power dependent and too slow to be explained by the widely accepted model due to Pokrovskii and Hensel et al. Detailed study of the decay of the electron-hole-droplets in doped Ge were carried out for the first time, and we find no evidence of evaporation of excitons by electron-hole-droplets at 4.2°K. This doped Ge result is unexplained by the model of Pokrovskii and Hensel et al. It is shown that a model based on a cloud of electron-hole-droplets generated in the crystal and incorporating (1) exciton flow among electron-hole-droplets in the cloud and (2) exciton diffusion away from the cloud is capable of explaining the observed results.
It is shown that impurities, introduced during device fabrication, can lead to the previously reported differences of the spectra of laser-excited high-purity Ge and electrically excited Ge double injection devices. By properly choosing the device geometry so as to minimize this Li contamination, it is shown that the Li concentration in double injection devices may be reduced to less than about 1015cm-3 and electrically excited luminescence spectra similar to the photoluminescence spectra of pure Ge may be produced. This proves conclusively that electron-hole-droplets may be created in double injection devices by electrical excitation.
The ratio of the LA- to TO-phonon-assisted luminescence intensities of the electron-hole-droplet is demonstrated to be equal to the high temperature limit of the same ratio of the exciton for Ge. This result gives one confidence to determine similar ratios for the electron-hole-droplet from the corresponding exciton ratio in semiconductors in which the ratio for the electron-hole-droplet cannot be determined (e.g., Si and GaP). Knowing the value of this ratio for the electron-hole-droplet, one can obtain accurate values of many parameters of the electron-hole-droplet in these semiconductors spectroscopically.
Resumo:
I. PREAMBLE AND SCOPE
Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.
II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS
Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.
Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.
A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.
III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa
An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.
The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.
Resumo:
Light-emitting diodes exhibiting efficient pure-white-light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8-naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8-naphthalimide components and optimizing the relative content of 1,8-naphthalimide derivatives in the resulting polymers, white-light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4-ethyleiledioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de I'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11900 cd m(-2), a current efficiency of 3.8 cd A(-1), a power efficiency of 2.0 lm W-1. an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m(-2).
Resumo:
A multilayer white organic light-emitting diode (OLED) with high efficiency was present. The luminescent layer was composed of a red dye 4-(dicyanomethylene)-2-t-butyle-6-(1,1,7,7-tetra-methyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped into NN-bis-(1-naphthyl)-N,N-diphenyl-1,1-biphenyl-4-4-diamine (NPB) layer and a blue-emitting 9,10-bis-(beta-naphthyl)-anthrene (DNA) layer. Red and blue emission, respectively, from DCJTB:NPB and DNA can be obtained by effectively controlling the thicknesses of DCJTB:NPB and DNA layers, thus a stable white light emission was achieved. The device turned on at 3.5 V, and the maximum luminance reached 16000 cd/m(2) at 21 V. The maximum current efficiency and power efficiency were 13.6 cd/A and 5.5 lm/W, respectively.
Resumo:
Nous investiguons dans ce travail la dynamique des excitons dans une couche mince d’agrégats H autoassemblés hélicoïdaux de molécules de sexithiophène. Le couplage intermoléculaire (J=100 meV) place ce matériau dans la catégorie des semi-conducteurs à couplage de type intermédiaire. Le désordre énergétique et la forte interaction électronsphonons causent une forte localisation des excitons. Les espèces initiales se ramifient en deux états distincts : un état d’excitons autopiégés (rendement de 95 %) et un état à transfert de charge (rendement de 5%). À température de la pièce (293K), les processus de sauts intermoléculaires sont activés et l’anisotropie de la fluorescence décroît rapidement à zéro en 5 ns. À basse température (14K), les processus de sauts sont gelés. Pour caractériser la dynamique de diffusion des espèces, une expérience d’anisotropie de fluorescence a été effectuée. Celle-ci consiste à mesurer la différence entre la photoluminescence polarisée parallèlement au laser excitateur et celle polarisée perpendiculairement, en fonction du temps. Cette mesure nous donne de l’information sur la dépolarisation des excitons, qui est directement reliée à leur diffusion dans la structure supramoléculaire. On mesure une anisotropie de 0,1 après 20 ns qui perdure jusqu’à 50ns. Les états à transfert de charge causent une remontée de l’anisotropie vers une valeur de 0,15 sur une plage temporelle allant de 50 ns jusqu’à 210 ns (période entre les impulsions laser). Ces résultats démontrent que la localisation des porteurs est très grande à 14K, et qu’elle est supérieure pour les espèces à transfert de charge. Un modèle numérique simple d’équations différentielles à temps de vie radiatif et de dépolarisation constants permet de reproduire les données expérimentales. Ce modèle a toutefois ses limitations, notamment en ce qui a trait aux mécanismes de dépolarisation des excitons.
Resumo:
Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn
Resumo:
Die vorliegende Dissertation dient dazu, das Verständnis des Exzitonentransports in organischen Halbleitern, wie sie in Leuchtdioden oder Solarzellen eingesetzt werden, zu vertiefen. Mithilfe von Computersimulationen wurde der Transport von Exzitonen in amorphen und kristallinen organischen Materialien beschrieben, angefangen auf mikroskopischer Ebene, auf der quantenmechanische Prozesse ablaufen, bis hin zur makroskopischen Ebene, auf welcher physikalisch bestimmbare Größen wie der Diffusionskoeffizient extrahierbar werden. Die Modellbildung basiert auf dem inkohärenten elektronischen Energietransfer. In diesem Rahmen wird der Transport des Exzitons als Hüpfprozess aufgefasst, welcher mit kinetischen Monte-Carlo Methoden simuliert wurde. Die notwendigen quantenmechanischen Übergangsraten zwischen den Molekülen wurden anhand der molekularen Struktur fester Phasen berechnet. Die Übergangsraten lassen sich in ein elektronisches Kopplungselement und die Franck-Condon-gewichtete Zustandsdichte aufteilen. Der Fokus dieser Arbeit lag einerseits darauf die Methoden zu evaluieren, die zur Berechnung der Übergangsraten in Frage kommen und andererseits den Hüpftransport zu simulieren und eine atomistische Interpretation der makroskopischen Transporteigenschaften der Exzitonen zu liefern. rnrnVon den drei untersuchten organischen Systemen, diente Aluminium-tris-(8-hydroxychinolin) der umfassenden Prüfung des Verfahrens. Es wurde gezeigt, dass stark vereinfachte Modelle wie die Marcus-Theorie die Übergangsraten und damit das Transportverhalten der Exzitonen oftmals qualitativ korrekt wiedergeben. Die meist deutlich größeren Diffusionskonstanten von Singulett- im Vergleich zu Triplett-Exzitonen haben ihren Ursprung in der längeren Reichweite der Kopplungselemente der Singulett-Exzitonen, wodurch ein stärker verzweigtes Netzwerk gebildet wird. Der Verlauf des zeitabhängigen Diffusionskoeffizienten zeigt subdiffusives Verhalten für kurze Beobachtungszeiten. Für Singulett-Exzitonen wechselt dieses Verhalten meist innerhalb der Lebensdauer des Exzitons in ein normales Diffusionsregime, während Triplett-Exzitonen das normale Regime deutlich langsamer erreichen. Das stärker anomale Verhalten der Triplett-Exzitonen wird auf eine ungleichmäßige Verteilung der Übergangsraten zurückgeführt. Beim Vergleich mit experimentell bestimmten Diffusionskonstanten muss das anomale Verhalten der Exzitonen berücksichtigt werden. Insgesamt stimmten simulierte und experimentelle Diffusionskonstanten für das Testsystem gut überein. Das Modellierungsverfahren sollte sich somit zur Charakterisierung des Exzitonentransports in neuen organischen Halbleitermaterialien eignen.
Resumo:
Room-temperature tunable excitonic photoluminescence is demonstrated in alloy-tuned layered Inorganic-Organic (IO) hybrids, (C12H 25NH3)2PbI4(1-y)Br4y (y = 0 to 1). These perovskite IO hybrids adopt structures with alternating stacks of low-dimensional inorganic and organic layers, considered to be naturally self-assembled multiple quantum wells. These systems resemble stacked monolayer 2D semiconductors since no interlayer coupling exists. Thin films of IO hybrids exhibit sharp and strong photoluminescence (PL) at room-temperature due to stable excitons formed within the low-dimensional inorganic layers. Systematic variation in the observed exciton PL from 510 nm to 350 nm as the alloy composition is changed, is attributed to the structural readjustment of crystal packing upon increase of the Br content in the Pb-I inorganic network. The energy separation between exciton absorption and PL is attributed to the modified exciton density of states and diffusion of excitons from relatively higher energy states corresponding to bromine rich sites towards the lower energy iodine sites. Apart from compositional fluctuations, these excitons show remarkable reversible flips at temperature-induced phase transitions. All the results are successfully correlated with thermal and structural studies. Such structural engineering flexibility in these hybrids allows selective tuning of desirable exciton properties within suitable operating temperature ranges. Such wide-range PL tunability and reversible exciton switching in these novel IO hybrids paves the way to potential applications in new generation of optoelectronic devices. © 2013 AIP Publishing LLC.
Resumo:
Carrier recombination dynamics in AlInGaN alloy has been studied by photoluminescence (PL) and time-resolved PL (TRPL) at various temperatures. The fast red-shift of PL peak energy is observed and well fitted by a physical model considering the thermal activation and transfer processes. This result provides evidence for the exciton localization in the quantum dot (QD)-like potentials in our AlInGaN alloy. The TRPL signals are found to be described by a stretched exponential function of exp[(-t/,tau)13], indicating the presence of a significant disorder in the material. The disorder is attributed to a randomly distributed QDs or clusters caused by indium fluctuations. By studying the dependence of the dispersive exponent beta on temperature and emission energy, we suggest that the exciton hopping dominate the diffusion of carriers localized in the disordered QDs. Furthermore, the localized states are found to have 0D density of states up to 250 K, since the radiative lifetime remains almost unchanged with increasing temperature. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.