140 resultados para ETHYLENEDIAMINE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous fungus-like ZnO nanostructures have been synthesized by simple thermal annealing of the hydrothermally synthesized sheet-like ZnS(en)(0.5) complex precursor in air at 600 degrees C. Structural and morphological changes occurring during ZnS(en)(0.5) -> ZnS -> ZnO transformations have been observed closely by annealing the as-synthesized precursor at 100-600 degrees C. Wurtzite ZnS nanosheets and ZnS-ZnO composites are obtained at temperatures of 400 degrees C and 500 degrees C, respectively. Thermal decomposition and oxidation of the ZnS(en) 0.5 nanosheets have been confirmed by differential scanning calorimetry and thermo-gravimetric analysis. The visible light driven photocatalytic degradation of methylene blue dye has been demonstrated in the synthesized samples. ZnS-ZnO composite shows the highest dye degradation efficiency of 74% due to the formation of surface complex as well as higher visible light absorption as a result of band-gap narrowing effect. The porous ZnO nanostructures show efficient visible photoluminescence (PL) emission with a colour coordinate of (0.29, 0.35), which is close to that of white light (0.33, 0.33). The efficient visible PL emission as well as visible light driven photocatalytic activity of the materials synthesized in the present work might be very attractive for their applications in future optoelectronic devices, including in white light emitting devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ethylenediamine trimolybdate (ENTMo) can show unusually photochromic and thermochromic properties and there exists in the difference of chromic mechanisms, which has been proved in our previous work [I]. In this paper, X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and laser Raman spectroscopy (LRS) of the colored samples are characterized and analyzed in detail. The crystal structure, the inorganic skeleton and the microenvironment of center ions of the colored samples do not substantively change except distortion. The color difference of the photochromic and the thermochromic samples is discussed and that the difference of reduction sites result in their different chromic mechanisms is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylenediamine trimolybdate ((C2H10N2)[Mo3O10], denoted as ENTMo) shows unusual photochromic and thermochromic properties. The color of the white ENTMo compounds becomes reddish brown gradually under UV irradiation, and changes gradually to blue-black upon annealing. XRD patterns and FT-IR spectra verify that the crystal structure of the colored samples is almost unchanged except distortion. UV-vis diffuse reflectance spectra (DRS) and ESR spectra of the photochromic and the thermochromic samples could confirm that there must exist difference between thermochromic and photochromic mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

new PVC membrane ion selective electrode which is highly selective towards Ni(II) ions was constructed using a Schiff base containing a binaphthyl moiety as the ionophore. The sensor exhibited a good Nernstian response for nickel ions over the concentration range 1.0 × 10–1 – 5.0 × 10–6 M with a lower limit of detection of 1.3 × 10–6 M. It has a fast response time and can be used for a period of 4 months with a good reproducibility. The sensor is suitable for use in aqueous solutions in a wide pH range of 3.6 – 7.4 and works satisfactorily in the presence of 25% (v/v) methanol or ethanol. The sensor shows high selectivity to nickel ions over a wide variety of cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for the direct determination of nickel content in real samples: effluent samples, chocolates and hydrogenated oils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metal complex, [Ni(en)2(H2O)2](NO3)2 (en = ethylenediamine), was decomposed in a static furnace at 200 C by autogenous decomposition to obtain phase pure metallic nickel nanocrystallites. The nickel metal thus obtained was studied by XRD, IR spectra, SEM and CHN analysis. The nickel crystallites are in the nanometer range as indicated by XRD studies. The IR spectral studies and CHN analyses show that the surface is covered with a nitrogen containing species. Thermogravimetric mass gain shows that the product purity is high (93%). The formed nickel is stable and resistant to oxidation up to 350 C probably due to the coverage of nitrogen containing species. Activation energy for the oxidation of the prepared nickel nanocrystallites was determined by non-isothermal methods and was found to depend on the conversion ratio. The oxidation kinetics of the nickel crystallites obeyed a Johnson–Mehl–Avrami mechanism probably due to the special morphology and crystallite strain present on the metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dept.of Applied Chemistry,Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-state M-EDTA chelates, where M represents the divalent ions Mg(II), Ca(II), Sr(II) or Ba(II) and EDTA is ethylenediaminetetraacetate anion, were synthesized. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal behaviour of these chelates. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amine functionalities were introduced onto the surface of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) films by applying radio frequency ammonia plasma treatment and wet ethylenediamine treatment. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS) for chemical composition and Raman microspectroscopy for the spatial distribution of the chemical moieties. The relative amount of amine functionalities introduced onto the PHBV surface was determined by exposing the treated films to the vapor of trifluoromethylbenzaldehyde (TFBA) prior to XPS analysis. The highest amount of amino groups on the PHBV surface could be introduced by use of ammonia plasma at short treatment times of 5 and 10 s, but no effect of plasma power within the range of 2.5-20 W was observed. Ethylenediamine treatment yielded fewer surface amino groups, and in addition an increase in crystallinity as well as degradation of PHBV was evident from Fourier transform infrared spectroscopy. Raman maps showed that the coverage of amino groups on the PHBV surfaces was patchy with large areas having no amine functionalities.