957 resultados para ETHANOL ROUTE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degrees C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and H-1 NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45ºC and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and ¹H NMR spectroscopy, suggested that the biodiesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Engenharia Química

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethyl glucuronide (EtG) is a minor and specific metabolite of ethanol. It is incorporated into growing hair, allowing a retrospective detection of alcohol consumption. However, the suitability of quantitative EtG measurements in hair to determine the quantity of alcohol consumed has not clearly been demonstrated yet. The purpose of this study was to evaluate the influence of ethanol dose and hair pigmentation on the incorporation of EtG into rat hair. Ethanol and EtG kinetics in blood were investigated after a single administration of ethanol. Eighteen rats were divided into four groups receiving 0 (control group), 1, 2, or 3g ethanol/kg body weight. Ethanol was administered on 4 consecutive days per week for 3 weeks by intragastric route. Twenty-eight days after the initial ethanol administration, newly grown hair was shaved. Pigmented and nonpigmented hair were analyzed separately by gas chromatography coupled to tandem mass spectrometry. Blood samples were collected within 12h after the ethanol administration. EtG and ethanol blood levels were measured by liquid chromatography coupled to tandem mass spectrometry and headspace gas chromatography-flame ionization detector, respectively. No statistically significant difference was observed in EtG concentrations between pigmented and nonpigmented hair (Spearman's rho=0.95). Thus, EtG incorporation into rat hair was not affected by hair pigmentation. Higher doses of ethanol resulted in greater blood ethanol area under the curve of concentration versus time (AUC) and in greater blood EtG AUC. A positive correlation was found between blood ethanol AUC and blood EtG AUC (Spearman's rho=0.84). Increased ethanol administration was associated with an increased EtG concentration in hair. Blood ethanol AUC was correlated with EtG concentration in hair (Pearson's r=0.89). EtG concentration in rat hair appeared to reflect the EtG concentration in blood. Ethanol was metabolized at a median rate of 0.22 g/kg/h, and the median elimination half-life of EtG was 1.21 h. This study supports that the bloodstream is likely to display a major role in the hair EtG incorporation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic steam reforming of ethanol (SRE) is a promising route for the production of renewable hydrogen (H2). This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The involvement of GABA-A receptors in the control of nociception was studied using the tail-flick test in rats. Non-hypnotic doses of the barbiturates phenobarbital (5-50 mg/kg), pentobarbital (17-33 mg/kg), and thiopental (7.5-30 mg/kg), of the benzodiazepine midazolam (10 mg/kg) or of ethanol (0.4-1.6 g/kg) administered by the systemic route reduced the latency for the tail-flick response, thus inducing a 'hyperalgesic' state in the animals. In contrast, non-convulsant doses of the GABA-A antagonist picrotoxin (0.12-1.0 mg/kg) administered systemically induced an increase in the latency for the tail-flick response, therefore characterizing an 'antinociceptive' state. Previous picrotoxin (0.12 mg/kg) treatment abolished the hyperalgesic state induced by effective doses of the barbiturates, midazolam or ethanol. Since phenobarbital, midazolam and ethanol reproduced the described hyperalgesic effect of GABA-A-specific agonists (muscimol, THIP), which is specifically antagonized by the GABA-A antagonist picrotoxin, our results suggest that GABA-A receptors are tonically involved in the modulation of nociception in the rat central nervous system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peroxiredoxins are receiving increasing attention as defenders against oxidative damage and sensors of hydrogen peroxide-mediated signaling events. In the yeast Saccharomyces cerevisiae, deletion of one or more isoforms of the peroxiredoxins is not lethal but compromises genome stability by mechanisms that remain under scrutiny. Here, we show that cytosolic peroxiredoxin-null cells (tsa1 Delta tsa2 Delta) are more resistant to hydrogen peroxide than wildtype (WT) cells and consume it faster under fermentative conditions. Also, tsa1 Delta tsa2 Delta cells produced higher yields of the 1-hydroxyethyl radical from oxidation of the glucose metabolite ethanol, as proved by spin-trapping experiments. A major role for Fenton chemistry in radical formation was excluded by comparing WT and tsa1 Delta tsa2 Delta cells with respect to their levels of total and chelatable metal ions and of radical produced in the presence of chelators. The main route for 1-hydroxyethyl radical formation was ascribed to the peroxidase activity of Cu, Zn-superoxide dismutase (Sod1), whose expression and activity increased similar to 5- and 2-fold, respectively, in tsa1 Delta tsa2 Delta compared with WT cells. Accordingly, overexpression of human Sod1 in WT yeasts led to increased 1-hydroxyethyl radical production. Relevantly, tsa1 Delta tsa2 Delta cells challenged with hydrogen peroxide contained higher levels of DNA-derived radicals and adducts as monitored by immuno-spin trapping and incorporation of (14)C from glucose into DNA, respectively. The results indicate that part of hydrogen peroxide consumption by tsa1 Delta tsa2 Delta cells is mediated by induced Sod1, which oxidizes ethanol to the 1-hydroxyethyl radical, which, in turn, leads to increased DNA damage. Overall, our studies provide a pathway to account for the hypermutability of peroxiredoxin-null strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have pointed Out that. zinc-based particles obtained from zinc acetate sol-gel route is a mixture of quantum-sized ZnO nanoparticles, zinc acetate, and zinc hydroxide double salt (Zn-HDS). Aiming the knowledge of the mechanisms involved in the formation of ZnO and Zn-HDS phases, the thermohydrolysis of ethanolic zinc acetate solutions induced by lithium hydroxide ([LiOH]/[Zn2+] = 0.1) or water ([H2O]/[Zn2+] = 0.05) addition was investigated at different isothermal temperatures (40, 50, 60 and 70 degrees C) by in situ measurements of turbidity, UV-vis absorption spectra and extended X-ray absorption fine structures (EXAFS). Only the growth of ZnO nanoparticles was observed in sol prepared with LiOH, while a two-step process was observed in that prepared with water addition, leading the fast growth of Zn-HDS and the formation of ZnO nanoparticles at advanced stage. A mechanism of dissolution/reprecipitation governed by the water/ethanol proportion is proposed to account for relative amount of ZnO. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have pointed out that zinc based particles obtained from ethanolic solution of a zinc acetate derivative (zinc oxy-acetate, Zn4O(Ac)(6)) are a mixture of nanometer sized ZnO, zinc oxy-acetate, and zinc hydroxide double salt (Zn-HDS). The knowledge of the mechanisms involved in the formation of ZnO and Zn-HDS phases, and the evolution of Zn species in reaction medium was monitored in situ during 14 h by simultaneous measurements of UV-vis absorption and extended X-ray absorption fine structures (EXAFS) spectra. This spectroscopic monitoring was initialized just after the addition of an ethanolic lithium hydroxide solution ([LiOH]/[Zn] = 0. 1) to the reaction medium kept under controlled temperature (40 degrees C). This study points out the first direct evidence of the reaction between ZnO nanoparticles and unreacted zinc oxy-acetate to form a Zn-HDS phase. The dissolution of ZnO and the reprecipitation of Zn-HDS are induced by the gradual release of water mainly produced by ethanol esterification well evidenced by gas chromatography coupled to mass spectroscopy and FT-IR measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electro-oxidation of ethanol was investigated on electrodeposited layers of Pd, Pt, and Rh in alkaline electrolyte. The reaction products were monitored by experiments of online differential electrochemical mass spectrometry (DEMS). Potentiodynamic curves for the ethanol electro-oxidation catalyzed by these three different metal electrocatalysts showed similar onset potentials, but the highest Faradaic current peak was observed for the Pt electrocatalyst. Online DEMS experiments evidenced similar amounts of CO2 for the three different materials, but Pd presented the higher production of ethylacetate (acetic acid). This indicated that the electrochemical oxidation of ethanol on the Pd surface occurred to a higher extent. The formation of methane, which was observed for Pt and Rh, after potential excursions to lower potentials, was absent for Pd. On the basis of the obtained results, it was stated that, on Pt and Rh, the formation of CO2 occurs mainly via oxidation of CO and CH (x,ad) species formed after dissociative adsorption of ethanol or ethoxy species that takes place only at low potentials. This indicates that the dissociative adsorption of ethanol or ethoxy species is inhibited at higher potentials on Pt and Rh. On the other hand, on the Pd electrocatalyst, the reaction may occur via nondissociative adsorption of ethanol or ethoxy species at lower potentials, followed by oxidation to acetaldehyde and, after that, by a further oxidation step to acetic acid on the electrocatalyst surface. Additionally, in a parallel route, the acetaldehyde molecules adsorbed on the Pd surface can be deprotonated, yielding a reaction intermediate in which the carbon-carbon bond is less protected, and therefore, it can be dissociated on the Pd surface, producing CO2, after potential excursions to higher potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiesel is currently produced from a catalytic transesterification reaction of various types of edible and non-edible oil with methanol. The use of waste animal tallow instead of edible oils opens a route to recycle this waste. This material has the advantage of lower costs but the problem of high content of free fatty acids, becoming necessary a pre-esterification reaction that increases the cost of the catalytic process. The production of biodiesel using supercritical alcohols is appropriate for materials with high acidity and water content, therefore the use of this process with animal fat is a promising alternative. Ethanol has been used because it can be produced from biomass via fermentation resulting in a complete renewable biodiesel, instead of methanol that derives from fossil feedstocks. Two different processes have been studied: first, the direct transesterification of animal fat using supercritical ethanol and second a two-step process where the first step is a hydrolysis of the animal fat and the second step is the esterification of the resulting fatty acids. The temperature, the molar ratio ethanol:fat and the time have been modified in the different reactions to study the effect in the final conversion and the degradation of the unsaturated fatty acid esters, main inconvenient of these high temperature and pressure processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol consumption damages the prostate, and testosterone is known by anti-inflammatory role. The cytokines were investigated in the plasma and ventral prostate of UChB rats submitted or not to testosterone therapy by ELISA and Western blot, respectively. Additionally, inflammatory foci and mast cells were identified in the ventral prostate slides stained by hematoxylin and eosin and toluidine blue, respectively. Inflammatory foci were found in the ethanol-treated animals and absent after testosterone therapy. Plasma levels of IL-6 and IL-10 were not changed while TNFα and TFG-β1 were increased in the animals submitted testosterone therapy. Regarding to ventral prostate, IL-6 did not alter, while IL-10, TNFα, and TFG-β1 were increased after testosterone therapy. Ethanol increases NFR2 in addition to high number of intact and degranulated mast cell which were reduced after testosterone therapy. So, ethanol and testosterone differentially modulates the cytokines in the plasma and prostate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ethanol oxidation reaction (EOR) is investigated on Pt/Au(hkl) electrodes. The Au(hkl) single crystals used belong to the [n(111)x(110)] family of planes. Pt is deposited following the galvanic exchange of a previously deposited Cu monolayer using a Pt(2+) solution. Deposition is not epitaxial and the defects on the underlying Au(hkl) substrates are partially transferred to the Pt films. Moreover, an additional (100)-step-like defect is formed, probably as a result of the strain resulting from the Pt and Au lattice mismatch. Regarding the EOR, both vicinal Pt/Au(hkl) surfaces exhibit a behavior that differs from that expected for stepped Pt; for instance, the smaller the step density on the underlying Au substrate, the greater the ability to break the CC bond in the ethanol molecule, as determined by in situ Fourier transform infrared spectroscopy measurements. Also, we found that the acetic acid production is favored as the terrace width decreases, thus reflecting the inefficiency of the surface array to cleave the ethanol molecule.