931 resultados para ESTIMATING EQUATIONS METHOD


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate whether relative contributions of genetic and shared environmental factors are associated with an increased risk in melanoma. Data from the Queensland Familial Melanoma Project comprising 15,907 subjects arising from 1912 families were analyzed to estimate the additive genetic, common and unique environmental contributions to variation in the age at onset of melanoma. Two complementary approaches for analyzing correlated time-to-onset family data were considered: the generalized estimating equations (GEE) method in which one can estimate relationship-specific dependence simultaneously with regression coefficients that describe the average population response to changing covariates; and a subject-specific Bayesian mixed model in which heterogeneity in regression parameters is explicitly modeled and the different components of variation may be estimated directly. The proportional hazards and Weibull models were utilized, as both produce natural frameworks for estimating relative risks while adjusting for simultaneous effects of other covariates. A simple Markov Chain Monte Carlo method for covariate imputation of missing data was used and the actual implementation of the Bayesian model was based on Gibbs sampling using the free ware package BUGS. In addition, we also used a Bayesian model to investigate the relative contribution of genetic and environmental effects on the expression of naevi and freckles, which are known risk factors for melanoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local influence diagnostics based on estimating equations as the role of a gradient vector derived from any fit function are developed for repeated measures regression analysis. Our proposal generalizes tools used in other studies (Cook, 1986: Cadigan and Farrell, 2002), considering herein local influence diagnostics for a statistical model where estimation involves an estimating equation in which all observations are not necessarily independent of each other. Moreover, the measures of local influence are illustrated with some simulated data sets to assess influential observations. Applications using real data are presented. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider consider the problem of dichotomizing a continuous covariate when performing a regression analysis based on a generalized estimation approach. The problem involves estimation of the cutpoint for the covariate and testing the hypothesis that the binary covariate constructed from the continuous covariate has a significant impact on the outcome. Due to the multiple testing used to find the optimal cutpoint, we need to make an adjustment to the usual significance test to preserve the type-I error rates. We illustrate the techniques on one data set of patients given unrelated hematopoietic stem cell transplantation. Here the question is whether the CD34 cell dose given to patient affects the outcome of the transplant and what is the smallest cell dose which is needed for good outcomes. (C) 2010 Elsevier BM. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The aim of this study was to determine whether the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI)- or Cockcroft-Gault (CG)-based estimated glomerular filtration rates (eGFRs) performs better in the cohort setting for predicting moderate/advanced chronic kidney disease (CKD) or end-stage renal disease (ESRD). METHODS: A total of 9521 persons in the EuroSIDA study contributed 133 873 eGFRs. Poisson regression was used to model the incidence of moderate and advanced CKD (confirmed eGFR < 60 and < 30 mL/min/1.73 m(2) , respectively) or ESRD (fatal/nonfatal) using CG and CKD-EPI eGFRs. RESULTS: Of 133 873 eGFR values, the ratio of CG to CKD-EPI was ≥ 1.1 in 22 092 (16.5%) and the difference between them (CG minus CKD-EPI) was ≥ 10 mL/min/1.73 m(2) in 20 867 (15.6%). Differences between CKD-EPI and CG were much greater when CG was not standardized for body surface area (BSA). A total of 403 persons developed moderate CKD using CG [incidence 8.9/1000 person-years of follow-up (PYFU); 95% confidence interval (CI) 8.0-9.8] and 364 using CKD-EPI (incidence 7.3/1000 PYFU; 95% CI 6.5-8.0). CG-derived eGFRs were equal to CKD-EPI-derived eGFRs at predicting ESRD (n = 36) and death (n = 565), as measured by the Akaike information criterion. CG-based moderate and advanced CKDs were associated with ESRD [adjusted incidence rate ratio (aIRR) 7.17; 95% CI 2.65-19.36 and aIRR 23.46; 95% CI 8.54-64.48, respectively], as were CKD-EPI-based moderate and advanced CKDs (aIRR 12.41; 95% CI 4.74-32.51 and aIRR 12.44; 95% CI 4.83-32.03, respectively). CONCLUSIONS: Differences between eGFRs using CG adjusted for BSA or CKD-EPI were modest. In the absence of a gold standard, the two formulae predicted clinical outcomes with equal precision and can be used to estimate GFR in HIV-positive persons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study evaluated the effectiveness and the sensitivity of in-office tooth bleaching with the use of a hybrid photo-activation system composed by LEDs and lasers. 40 patients, both genders, aged 18 through 25 years, were randomly distributed into two treatment groups: group I, 35% hydrogen peroxide, with a total bleaching time of 135 min divided into three sessions, and group II, 35% hydrogen peroxide and photo-thermal catalysis by an LED-laser system (300 mW cm-2), for a total bleaching time of 72 min divided into three sessions. The treatment efficiency was measured by reflectance spectroscopy and sensitivity by a visual analog scale (VAS). The final luminosity value (ΔL), color variation (ΔE) and sensitivity (S) resulting from the treatments were analyzed by the generalized estimating equations method (GEEs), and Bonferroni post hoc multiple comparisons at 5% significance. The two groups presented similar colors (ΔE) and luminosities (ΔL) after treatment. Group I presented a greater sensitivity index (37.6 ± 5.9%) compared to group II (11.1 ± 3.3%), statistically significant at p < 0.05. The use of LED-laser hybrid light, as a catalyst of the bleaching agents, showed a significant decrease of provoked tooth sensitivity and a treatment time reduced by 53%, with the same aesthetic results as without a light source. © 2013 Astro Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretestposttest longitudinal data. In particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: Renal dysfunction is a powerful predictor of adverse outcomes in patients hospitalized for acute coronary syndrome. Three new glomerular filtration rate (GFR) estimating equations recently emerged, based on serum creatinine (CKD-EPIcreat), serum cystatin C (CKD-EPIcyst) or a combination of both (CKD-EPIcreat/cyst), and they are currently recommended to confirm the presence of renal dysfunction. Our aim was to analyse the predictive value of these new estimated GFR (eGFR) equations regarding mid-term mortality in patients with acute coronary syndrome, and compare them with the traditional Modification of Diet in Renal Disease (MDRD-4) formula. METHODS AND RESULTS: 801 patients admitted for acute coronary syndrome (age 67.3±13.3 years, 68.5% male) and followed for 23.6±9.8 months were included. For each equation, patient risk stratification was performed based on eGFR values: high-risk group (eGFR<60ml/min per 1.73m2) and low-risk group (eGFR⩾60ml/min per 1.73m2). The predictive performances of these equations were compared using area under each receiver operating characteristic curves (AUCs). Overall risk stratification improvement was assessed by the net reclassification improvement index. The incidence of the primary endpoint was 18.1%. The CKD-EPIcyst equation had the highest overall discriminate performance regarding mid-term mortality (AUC 0.782±0.20) and outperformed all other equations (ρ<0.001 in all comparisons). When compared with the MDRD-4 formula, the CKD-EPIcyst equation accurately reclassified a significant percentage of patients into more appropriate risk categories (net reclassification improvement index of 11.9% (p=0.003)). The CKD-EPIcyst equation added prognostic power to the Global Registry of Acute Coronary Events (GRACE) score in the prediction of mid-term mortality. CONCLUSION: The CKD-EPIcyst equation provides a novel and improved method for assessing the mid-term mortality risk in patients admitted for acute coronary syndrome, outperforming the most widely used formula (MDRD-4), and improving the predictive value of the GRACE score. These results reinforce the added value of cystatin C as a risk marker in these patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this paper is to extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the Laplace equation in two dimensions using approximate approximations. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is growing interest, especially for trials in stroke, in combining multiple endpoints in a single clinical evaluation of an experimental treatment. The endpoints might be repeated evaluations of the same characteristic or alternative measures of progress on different scales. Often they will be binary or ordinal, and those are the cases studied here. In this paper we take a direct approach to combining the univariate score statistics for comparing treatments with respect to each endpoint. The correlations between the score statistics are derived and used to allow a valid combined score test to be applied. A sample size formula is deduced and application in sequential designs is discussed. The method is compared with an alternative approach based on generalized estimating equations in an illustrative analysis and replicated simulations, and the advantages and disadvantages of the two approaches are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV