999 resultados para ERROR TRAP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Workplace accidents involving machines are relevant for their magnitude and their impacts on worker health. Despite consolidated critical statements, explanation centered on errors of operators remains predominant with industry professionals, hampering preventive measures and the improvement of production-system reliability. Several initiatives were adopted by enforcement agencies in partnership with universities to stimulate production and diffusion of analysis methodologies with a systemic approach. Starting from one accident case that occurred with a worker who operated a brake-clutch type mechanical press, the article explores cognitive aspects and the existence of traps in the operation of this machine. It deals with a large-sized press that, despite being endowed with a light curtain in areas of access to the pressing zone, did not meet legal requirements. The safety devices gave rise to an illusion of safety, permitting activation of the machine when a worker was still found within the operational zone. Preventive interventions must stimulate the tailoring of systems to the characteristics of workers, minimizing the creation of traps and encouraging safety policies and practices that replace judgments of behaviors that participate in accidents by analyses of reasons that lead workers to act in that manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Workplace accidents involving machines are relevant for their magnitude and their impacts on worker health. Despite consolidated critical statements, explanation centered on errors of operators remains predominant with industry professionals, hampering preventive measures and the improvement of production-system reliability. Several initiatives were adopted by enforcement agencies in partnership with universities to stimulate production and diffusion of analysis methodologies with a systemic approach. Starting from one accident case that occurred with a worker who operated a brake-clutch type mechanical press, the article explores cognitive aspects and the existence of traps in the operation of this machine. It deals with a large-sized press that, despite being endowed with a light curtain in areas of access to the pressing zone, did not meet legal requirements. The safety devices gave rise to an illusion of safety, permitting activation of the machine when a worker was still found within the operational zone. Preventive interventions must stimulate the tailoring of systems to the characteristics of workers, minimizing the creation of traps and encouraging safety policies and practices that replace judgments of behaviors that participate in accidents by analyses of reasons that lead workers to act in that manner.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an almost 3 year long time series of shell fluxes and oxygen isotopes of left-coiling Neogloboquadrina pachyderma and Turborotalita quinqueloba from sediment traps moored in the deep central Irminger Sea. We determined their response to the seasonal change from a deeply mixed water column with occasional deep convection in winter to a thermally stratified water column with a surface mixed layer (SML) of around 50 m in summer. Both species display very low fluxes during winter with a remnant summer population holding out until replaced by a vital population that seeds the subsequent blooms. This annual population overturning is marked by a 0.7 per mill increase in d18O in both species. The shell flux of N. pachyderma peaks during the spring bloom and in late summer, when stratification is close to its minimum and maximum, respectively. Both export periods contribute about equally and account for >95% of the total annual flux. Shell fluxes of T. quinqueloba show only a single broad pulse in summer, thus following the seasonal stratification cycle. The d18O of N. pachyderma reflects temperatures just below the base of the seasonal SML without offset from isotopic equilibrium. The d18O pattern of T. quinqueloba shows a nearly identical amplitude and correlates highly with the d18O of N. pachyderma. Therefore T. quinqueloba also reflects temperature near the base of the SML but with a positive offset from isotopic equilibrium. These offsets contrast with observations elsewhere and suggest a variable offset from equilibrium calcification for both species. In the Irminger Sea the species consistently show a contrast in their flux timings. Their flux-weighted delta d18O will thus dominantly be determined by seasonal temperature differences at the base of the SML rather than by differences in their depth habitat. Consequently, their sedimentary delta d18O may be used to infer the seasonal contrast in temperature at the base of the SML.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performing experiments on small-scale quantum computers is certainly a challenging endeavor. Many parameters need to be optimized to achieve high-fidelity operations. This can be done efficiently for operations acting on single qubits, as errors can be fully characterized. For multiqubit operations, though, this is no longer the case, as in the most general case, analyzing the effect of the operation on the system requires a full state tomography for which resources scale exponentially with the system size. Furthermore, in recent experiments, additional electronic levels beyond the two-level system encoding the qubit have been used to enhance the capabilities of quantum-information processors, which additionally increases the number of parameters that need to be controlled. For the optimization of the experimental system for a given task (e.g., a quantum algorithm), one has to find a satisfactory error model and also efficient observables to estimate the parameters of the model. In this manuscript, we demonstrate a method to optimize the encoding procedure for a small quantum error correction code in the presence of unknown but constant phase shifts. The method, which we implement here on a small-scale linear ion-trap quantum computer, is readily applicable to other AMO platforms for quantum-information processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atomic ions trapped in micro-fabricated surface traps can be utilized as a physical platform with which to build a quantum computer. They possess many of the desirable qualities of such a device, including high fidelity state preparation and readout, universal logic gates, long coherence times, and can be readily entangled with each other through photonic interconnects. The use of optical cavities integrated with trapped ion qubits as a photonic interface presents the possibility for order of magnitude improvements in performance in several key areas of their use in quantum computation. The first part of this thesis describes the design and fabrication of a novel surface trap for integration with an optical cavity. The trap is custom made on a highly reflective mirror surface and includes the capability of moving the ion trap location along all three trap axes with nanometer scale precision. The second part of this thesis demonstrates the suitability of small micro-cavities formed from laser ablated fused silica substrates with radii of curvature in the 300-500 micron range for use with the mirror trap as part of an integrated ion trap cavity system. Quantum computing applications for such a system include dramatic improvements in the photonic entanglement rate up to 10 kHz, the qubit measurement time down to 1 microsecond, and the measurement error rates down to the 10e-5 range. The final part of this thesis details a performance simulator for exploring the physical resource requirements and performance demands to scale such a quantum computer to sizes capable of performing quantum algorithms beyond the limits of classical computation.