998 resultados para ERBIUM COMPLEX
Resumo:
A near-infrared luminescent macroporous material (PL-Macromaterial) and a near-infrared luminescent/magnetic bifunctional macroporous material (MML-Macromaterial) were synthesized by using polystyrene microspheres (PS) and Fe3O4 @polystyrene core-shell nanoparticles (Fe3O4@PS), respectively, as templates. Both the PL-Macromaterial and the M/PL-Macromaterial show the characteristic emission of the Er 3, ion. Moreover, the M/PL-Macromaterial possesses superparamagnetic properties at room temperature.
Resumo:
In the structure of catena-poly[{triaqua(L-pro-line-O)erbium(III)}-bis-mu-(L-proline-O:O')-{triaqua-(L-proline-O)erbium(III)}-bis-mu-(L-proline-O:O') hexaperchlorate], each Er3+ ion is coordinated by five carboxyl O atoms from the L-proline molecules and three water molecules. Four of the SiX L-proline molecules act as bidentate bridging ligands to link the Er3+ ions through the carboxyl groups, thus producing a one-dimensional chain structure. The other two ligands coordinate unidentately to the rare-earth ions. Hydrogen bonds formed between the coordinated water molecules and between the water and unidentate proline ligand stabilize the polymeric chain.
Resumo:
The crystal structure of erbium (III) complex of benzene acetic acid is reported. The complex crystallizes in the monoclinic space group P2(1)/a with a = 0,9008(3)nm, b=1.4242(5) nm, c=1.8437(7) nm, beta=98.80(3)degrees, V = 2.337(1) nm(3), Z = 4. The mechanism of thermal decomposition of complex has been studied by TG-DTG-DTA. The activation energy for dehydration reaction has been calculated by Freeman Carroll method. The enthalpy change for dehydration and phase change process has been determined.
Resumo:
in this communication, a novel Er3+ complex Er(PT)(3)TPPO [PT = 1-phenyl-3-methyl-4-tert-butylbenzoyl-5-pyrazolone, TPPO = triphenyl phosphine oxide] is successfully synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. Its optical properties and the energy transfer process from the ligand PT to the Er3+ ion are investigated, the typical near-infrared (NIR) luminescence (centered at around 1530 nm) is attributed to the I-4(13/2) -> I-4(15/2) transition of Er3+ ion which results from the efficient energy transfer from PT to Er3+ ion (an antenna effect). The wider full width at half maximum (78 nm) peaked at 1530 nm in the emission spectrum and the Judd-Ofelt theory calculation on the radiative properties suggest that Er(PT)(3)TPPO should be a promising candidate for tunable lasers and planar optical amplifiers.
Resumo:
The structures of [Nd-2(Acc(6))(H2O)(6)](ClO4)(6) .(H2O)(6) (1) [Er-2(Acc(6))(4)(H2O)(8)](ClO4)(6) .(H2O)(11) (2) and [Ca-5(Acc(6))(12)(H2O)(6)](ClO4)(10).(H2O)(4) (3) (Acc(6) = 1-aminocyclohexane-1-carboxylic acid) have been determined by X-ray crystallography. The lanthanide complexes 1 and 2 are dimeric in which two lanthanide cations are bridged by four carboxylato groups of Acc(6) molecules. In addition, the neodymium complex (1) features the unidentate coordination of the carboxyl group of an Acc(6) molecule in place of a water molecule in the erbium complex (2). The coordination number in both 1 and 2 is eight. The calcium Acc(6) complex (3) is polymeric; three different calcium environments are observed in the asymmetric unit. Two calcium ions are hexa-coordinated and one is hepta-coordinated. Considerable differences are observed between the solid state structures of Ln(III) and Ca-II complexes of Acc(6
Resumo:
By using the bifunctional ligand, 8-hydroxyquinoline-functionalized organosilane (Q-Si), the new mesoporous material Q-MCM-41 covalently bonded with 8-hydroxyquinoline was synthesized. Through the ligand exchange reaction, the new near-infrared (NIR) luminescent mesoporous LnQ(3)-MCM-41 (Ln = Er, Nd, Yb) materials were prepared by linking the lanthanide quinolinate complexes to the ordered mesoporous Q-MCM-41 material. The LnQ(3)-MCM-41 materials were characterized by powder X-ray diffraction and N-2 adsorption/desorption, and they all show the characteristic mesoporous structure of MCM-41 with highly uniform pore size distributions.
Resumo:
The near-infrared (NIR) luminescent lanthanide ions, such as Er(III), Nd(III), and Yb(III), have been paid much attention for the potential use in the optical communications or laser systems. For the first time, the NIR-luminescent Ln(dbm)(3)phen complexes have been covalently bonded to the ordered mesoporous materials MCM-41 and SBA-15 via a functionalized phen group phen-Si (phen-Si = 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline; dbm = dibenzoylmethanate; Ln = Er, Nd, Yb). The synthesis parameters X = 12 and Y = 6 h (X denotes Ln(dbM)(3)(H2O)(2)/phen-MCM-41 molar ratio or Ln(dbM)(3)(H2O)(2)/phenSBA-15 molar ratio and Y is the reaction time for the ligand exchange reaction; phen-MCM-41 and phenSBA-15 are phen-functionalized MCM-41 and SBA-15 mesoporous materials, respectively) were selected through a systematic and comparative study. The derivative materials, denoted as Ln(dbM)(3)phen-MCM-41 and Ln(dbm)(3)phen-SBA-15 (Ln = Er, Nd, Yb), were characterized by powder X-ray diffraction, nitrogen adsorption/desorption, Fourier transform infrared (FT-IR), elemental analysis, and fluorescence spectra. Upon excitation of the ligands absorption bands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide ions through the intramolecular energy transfer from the ligands to the lanthanide ions.
Resumo:
The ligand Hhfth [4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dione], which contains a heptafluoropropyl group, has been used to synthesize several new ternary lanthanide complexes (Ln = Er, Ho, Yb, Nd) in which the synergistic ligand is 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy). The two series of complexes are [Ln(hfth)(3)phen] [abbreviated as (Ln)1, where Ln = Er, Ho, Yb] and [Ln(hfth)(3)bipy] [abbreviated as (Ln)2, where Ln = Er, Ho, Yb, Nd]. Members of the two series have been structurally characterized. The growth morphology, diffuse reflectance (DR) spectra, thermogravimetric analyses, and photophysical studies of these complexes are described in detail. After ligand-mediated excitation of the complexes, they all show the characteristic near-infrared (NIR) luminescence of the corresponding Ln(3+) ions (Ln = Er, Ho, Yb, Nd). This is attributed to efficient energy transfer from the ligands to the central Ln(3+) ions, i.e. an antenna effect. The heptafluorinated substituent in the main hfth sensitizer serves to reduce the degree of vibrational quenching. With these NIR-luminescent lanthanide complexes, the luminescent spectral region from 1300 to 1600 nm, which is of particular interest for telecommunication applications, can be covered completely.
Resumo:
The crystal structure of Er(PM)(3)(TP)(2) [PM = 1-Phenyl-3-methyl-4-isobutyryl-5-pyrazoloiie, TP = triphenyl phosphine oxide] was reported and its photoluminescence properties were studied by UV-vis absorption, excited, and emission spectra. The Judd-ofelt theory was introduced to calculate the radiative transition rate and the radiative decay time of 3.65 ms for the I-4(13/2) -> I-4(15/2) transition of Er3+ ion in this complex.
Resumo:
A new Er(III)-Na(I) coordination polymer of stoichiometry [NaEr2L5(H2O)(6)(NO3)](NO3). 3.5H(2)O (HL = picolinic acid N-oxide) has been synthesized and characterized by single-crystal X-ray analysis. Crystals are triclinic, P (1) over bar with a = 9.823(2), b = 12.453(2), c = 20.643(4) Angstrom; alpha = 98.49(3), beta = 101.40(3), gamma = 108.69(3)degrees; V = 2284(1) Angstrom(3); Z = 2. Of the two independent eight-coordinate erbium(III) ions in this complex, one is surrounded by four bidentate chelating L ligands, and the other by one bidentate chelating L ligand, four aqua ligands and two anti-carboxylate oxygen atoms from two neighboring [ErL4] units. The sodium(I) ion is in a distorted octahedral environment, being coordinated by a unidentate nitrate anion, three aqua ligands and two anti-carboxylate oxygen atoms from two adjacent [ErL4] units. The complex is built from zigzag chains of syn-anti carboxylate-bridged erbium(III) moieties directed in the a direction, which are cross-linked pairwise by aqua-bridged dimeric sodium(I) units. The resulting composite polymeric chains are further connected by hydrogen bonds to form a three-dimensional network.
Resumo:
In this paper, a comparative study of thin films of Er2O3 and Gd2O3 grown on n-type Si(100) by low-pressure metalorganic chemical vapour deposition (MOCVD) under the identical conditions has been presented. beta-Diketonate complex of rate earth metals was used as precursor. Description on the evolution of the morphology, structure, optical, and electrical characteristics of films with respect to growth parameters and post-deposition annealing process has been presented. As-gown Gd2O3 films grow with <111> texture, whereas the texture of Er2O3 films strongly depends on the growth temperature (either <100> or <111>). Compositional analysis reveals that the Gd2O3 films grown at or above 500degreesC are carbon free whereas Er2O3 films at upto 525degreesC show the presence of heteroatoms and Er2O3 films grown above 525degreesC are carbon five. The effective dielectric constant is in the range of 7-24, while the fixed charge density is in the range - 10(11) to 10(10) CM-2 as extracted from the C-V characteristics. DC I-V study was carried out to examine the leakage behaviour of films. It reveals that the as-grown Gd2O3 film was very leakey in nature. Annealing of the films in oxidizing ambient for a period of 20 min results in a drastic improvement in the leakage behaviour. The presence of heteroatoms (such as carbon) and their effect on the properties of films are discussed.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Erbium-implanted silicones were treated by lamp-heating rapid thermal annealing (RTA). Two types of erbium-related photoluminescence spectra appear under different anneal temperatures. 750 degrees C annealing optimizes the luminescence intensity, which does not change with anneal time. Exciton-mediated energy transfer model in erbium-doped silicon was presented. The emission intensity is related to optical active erbium concentration, lifetime of excited Er3+ ion and spontaneous emission time. The thermal quenching of the erbium luminescence in Si is caused by thermal ionization of erbium-bound exciton complex and nonradiative energy backtransfer processes, which correspond to the activation energy of 6.6 meV and 47.4 meV respectively.
Resumo:
Exciton-mediated energy transfer model in Er-doped silicon was presented. The emission intensity is related to optically active Er concentration, lifetime of excited Er3+ ion and spontaneous emission. The thermal quenching of the Er luminescence in Si is caused by thermal ionization of Er-bound exciton complex and nonradiative energy back-transfer processes, which correspond to the activation energy of 6.6 and 47.4 meV, respectively. Er doping in silicon introduces donor states, a large enhancement in the electrical activation of Er (up to two orders of magnitude) is obtained by co-implanting Er with O. It appears that the donor states are the gateway to the optically active Er. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The formation of ( t-BuCp)(2)ErOEt was discussed. Its single-crystal structure was determined by X-ray diffraction. The crystal is monoclinic, P2(1)/c space group, a = 1.0191(2), b = 1.6203(5), c = 1.2118(3) nm, beta = 102. 960( 10)degrees, V = 1.9500 (nm(3)), Z = 2, D-c = 1.566 mg . m(-3), R = 0.0450, R-w = 0.1363. The complex is monomeric and solvent-free in the solid state. The erbium ion is coordinated by two tert-butyl-cyclopentadienyl rings and one oxygen atom of ethoxy group to form a seven-coordinated complex.