6 resultados para ERAInterim
Resumo:
The Atlantic meridional overturning circulation in two versions of the NEMO ¼° global ocean model has been compared with the RAPID transport array at 26oN. Both model versions reproduce the mean MOC strength well although the Florida Straits flows differ because the pathway of the Gulf Stream is not strongly constrained at this resolution. Both models however have a mean meridional heat transport of 1.07PW, much lower than the 1.35PW from RAPID observations in Apr04-Oct07. Much of the heat transport discrepancy is due to lower transports in summer across the MidOcean (Bahamas-Africa) section, due to stronger southward geostrophic flows in the top 100m where the water is warmest. Seasonal thermocline changes increase temperature differences across the basin driving stronger geostrophic shear, but this effect is much weaker in the top 100m of the RAPID velocity data. The effect accounts for a reduction of 1.1Sv in MOC and 0.1PW in heat transports. The rest of the discrepancy comes from lower Ekman transports from using ERAInterim winds instead of QuikSCAT, a smaller zonally-varying “Eddy” heat transport component, estimated from repeat XBT sections in the observations, and the southward throughflow in the model. Other differences in depth structure of the model MOC and RAPID observations are described but have much less impact on heat transports.
Resumo:
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset—the period 1989–2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases.
Sensitivity of resolved and parameterized surface drag to changes in resolution and parameterization
Resumo:
The relative contribution of resolved and parameterized surface drag towards balancing the atmospheric angular momentum flux convergence (AMFC), and their sensitivity to horizontal resolution and parameterization, are investigated in an atmospheric model. This sensitivity can be difficult to elucidate in free-running climate models, in which the AMFC varies with changing climatologies and, as a result, the relative contributions of surface terms balancing the AMFC also vary. While the sensitivity question has previously been addressed using short-range forecasts, we demonstrate that a nudging framework is an effective method for constraining the AMFC. The Met Office Unified Model is integrated at three horizontal resolutions ranging from 130 km (N96) to 25 km (N512) while relaxing the model’s wind and temperature fields towards the ERAinterim reanalysis within the altitude regions of maximum AMFC. This method is validated against short range forecasts and good agreement is found. These experiments are then used to assess the fidelity of the exchange between parameterized and resolved orographic torques with changes in horizontal resolution. Although the parameterized orographic torque reduces substantially with increasing horizontal resolution, there is little change in resolved orographic torque over 20N to 50N. The tendencies produced by the nudging routine indicate that the additional drag at lower horizontal resolution is excessive. When parameterized orographic blocking is removed at the coarsest of these resolutions, there is a lack of compensation, and even compensation of the opposite sense, by the boundary layer and resolved torques which is particularly pronounced over 20N to 50N. This study demonstrates that there is strong sensitivity in the behaviour of the resolved and parameterized surface drag over this region.
Resumo:
The Northeast of Brazil (NEB) shows high climate variability, ranging from semiarid regions to a rainy regions. According to the latest report of the Intergovernmental Panel on Climate Change, the NEB is highly susceptible to climate change, and also heavy rainfall events (HRE). However, few climatology studies about these episodes were performed, thus the objective main research is to compute the climatology and trend of the episodes number and the daily rainfall rate associated with HRE in the NEB and its climatologically homogeneous sub regions; relate them to the weak rainfall events and normal rainfall events. The daily rainfall data of the hydrometeorological network managed by the Agência Nacional de Águas, from 1972 to 2002. For selection of rainfall events used the technique of quantiles and the trend was identified using the Mann-Kendall test. The sub regions were obtained by cluster analysis, using as similarity measure the Euclidean distance and Ward agglomerative hierarchical method. The results show that the seasonality of the NEB is being intensified, i.e., the dry season is becoming drier and wet season getting wet. The El Niño and La Niña influence more on the amount of events regarding the intensity, but the sub-regions this influence is less noticeable. Using daily data reanalysis ERAInterim fields of anomalies of the composites of meteorological variables were calculated for the coast of the NEB, to characterize the synoptic environment. The Upper-level cyclonic vortex and the South atlantic convergene zone were identified as the main weather systems responsible for training of EPI on the coastland
Resumo:
The variability of results from different automated methods of detection and tracking of extratropical cyclones is assessed in order to identify uncertainties related to the choice of method. Fifteen international teams applied their own algorithms to the same dataset - the period 1989-2009 of interim European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERAInterim) data. This experiment is part of the community project Intercomparison of Mid Latitude Storm Diagnostics (IMILAST; see www.proclim.ch/imilast/index.html). The spread of results for cyclone frequency, intensity, life cycle, and track location is presented to illustrate the impact of using different methods. Globally, methods agree well for geographical distribution in large oceanic regions, interannual variability of cyclone numbers, geographical patterns of strong trends, and distribution shape for many life cycle characteristics. In contrast, the largest disparities exist for the total numbers of cyclones, the detection of weak cyclones, and distribution in some densely populated regions. Consistency between methods is better for strong cyclones than for shallow ones. Two case studies of relatively large, intense cyclones reveal that the identification of the most intense part of the life cycle of these events is robust between methods, but considerable differences exist during the development and the dissolution phases.
Resumo:
Este trabalho tem como objetivo a comparação da intensidade, frequência e distribuição de um conjunto de índices de estabilidade atmosférica simulados entre o clima histórico (1986-2005) e um cenário climático (2081-2100) na Península Ibérica. Considerou-se o cenário de emissão de gases RCP8.5. Estes índices avaliam a instabilidade atmosférica que é um elemento fundamental e percursor no desenvolvimento de tempestades. Através dos seus valores limite, é possível estimar alterações na probabilidade de ocorrência de eventos extremos que se poderão desenvolver no clima futuro, relativamente ao histórico. Primeiro, utilizou-se um conjunto de simulações do WRF com dois forçamentos: reanálises do ERA-Interim e um modelo do Max Planck Institute. De seguida, foram calculados diferentes índices de estabilidade. A validação do modelo consistiu no cálculo das médias sazonais, da sua diferença e das respetivas PDFs dos índices simulados pelo WRF-MPI e WRF-ERA. Verifica-se uma sobrestimação do CAPE, SHR6km (vento de corte) e SWEAT simulados pelo WRF-MPI. No entanto, nos campos dos índices simulados pelos dois forçamentos para o período histórico, verifica-se que os padrões espaciais são semelhantes apesar das diferenças na intensidade. Como as alterações climáticas dos índices são avaliadas através de diferenças, estas discrepâncias não invalidam a utilização do modelo no futuro. Posteriormente foram estudadas as alterações climáticas dos índices através da comparação entre o clima histórico e futuro. Estima-se um aumento da intensidade do CAPE e uma diminuição (aumento) da frequência de eventos com intensidade reduzida (elevada). Estas alterações são robustas no verão e outono. Também é esperado um aumento da intensidade do SHR6km na primavera e inverno tal como da frequência de SHR6km elevado nestas estações e uma redução da intensidade e da frequência de eventos com SHR6km elevado nas restantes. Haverá um possível aumento robusto da intensidade do SWEAT no verão e outono, bem como da frequência destes valores. Concluindo, será provável um aumento da frequência dos ambientes favoráveis ao desenvolvimento de tempestades, devido a uma maior intensidade e probabilidade de ocorrência de valores extremos do CAPE e do SWEAT. No entanto, a redução do SHR6km, poderá diminuir a organização das tempestades e o seu tempo de vida.