44 resultados para EPSPS
Resumo:
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid-modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well-defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single-stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the Specific sequence related to the target bar gene with the dynamic range comprised between 1.0 X 10(-7) mol/L to 1.0 x 10(-4) mol/L. A detection limit of 2.25 x.10(-8) mol/L. of oligonucleotides can be estimated.
Resumo:
The 5-enolpyruvylshikimate-3-phosphate synthase catalyses the sixth step of the shikimate pathway that is responsible for synthesizing aromatic compounds and is absent in mammals, which makes it a potential target for drugs development against microbial diseases. Here, we report the phosphate binding effects at the structure of the 5-enolpyruvyl shikimate-3-phosphate synthase from Mycobacterium tuberculosis. This enzyme is formed by two similar domains that close on each other induced by ligand binding, showing the occurrence of a large conformation change. We have monitored the phosphate binding effects using analytical ultracentrifugation, small angle X-ray scattering and, circular dichroism techniques. The low resolution results showed that the enzyme in the presence of phosphate clearly presented a more compact structure. Thermal-induced unfolding experiments followed by circular dichroism suggested that phosphate rigidified the enzyme. Summarizing, these data suggested that the phosphate itself is able to induce conformational change resulting in the closure movement in the M. tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The precise timing of events in the brain has consequences for intracellular processes, synaptic plasticity, integration and network behaviour. Pyramidal neurons, the most widespread excitatory neuron of the neocortex have multiple spike initiation zones, which interact via dendritic and somatic spikes actively propagating in all directions within the dendritic tree. For these neurons, therefore, both the location and timing of synaptic inputs are critical. The time window for which the backpropagating action potential can influence dendritic spike generation has been extensively studied in layer 5 neocortical pyramidal neurons of rat somatosensory cortex. Here, we re-examine this coincidence detection window for pyramidal cell types across the rat somatosensory cortex in layers 2/3, 5 and 6. We find that the time-window for optimal interaction is widest and shifted in layer 5 pyramidal neurons relative to cells in layers 6 and 2/3. Inputs arriving at the same time and locations will therefore differentially affect spike-timing dependent processes in the different classes of pyramidal neurons.
Resumo:
在麻醉Wistar大鼠上,结合脑室给药,应用双电极刺激技术刺激海马独立的两条侧枝/联合纤维通 路、TA通路,并在CAl区放射层记录兴奋性突触后电位(EPSP),对海马CAl区锥体细胞近、远端树突EPSP 的空间整合进行了初步探讨。结果表明,海马CAl区锥体细胞近、远端树突的空间整合都是亚线性的;近端树 突的空间整合不受期望值大小的影响,但远端树突的空间整合随期望值增加而减小(更趋于亚线性)。此外, 荷包牡丹碱没有影响EPSP的空间整合;但瞬时A型钾通道(IAK+)的拮抗剂氨基吡啶-4却使得近端树突的 空间整合趋于线性发展。本研究表明,海马CAl锥体细胞近、远端树突不同的被动、主动特征使它们具有了不 同的空间整合特性。由于近端树突接受海马内部侧枝/联合纤维投射的信息,远端树突通过TA通路接受内嗅皮 层投射的信息,由此提示,CAl区锥体细胞对来自海马内部和直接来自皮层的信息输入采用了不同的整合方 式。
Resumo:
自转基因作物问世以来,转基因产品的安全性问题一直是人们关注的焦点。本文根据GenBank中登录的转基因大豆完整外源DNA序列设计了几对引物,对转基因大豆进行了巢式PCR检测。结果表明,巢式PCR可以扩增10-10g/μl浓度的DNA溶液,检测灵敏度高达0.01%。该巢式PCR技术具有高度特异性、灵敏度和很好的重复性。用巢式PCR对部分市售的水产饲料和豆制食品进行检测,90.6%的水产饲料和46.5%的食品能检测出外源基因片段,表明转基因大豆广泛存在于水产饲料和我们的日常食品中,为食品安全分析和管理提供了方法和依据。环介导的等温扩增技术(LAMP)依赖于能够识别靶序列上6个特异区域的引物和一种具有链置换特性的DNA聚合酶,在等温条件下可高效、快速、高特异地扩增靶序列。本研究建立了转基因大豆的LAMP扩增技术,针对豆制品以及饲料的转基因LAMP检测技术正在研究和开发中。 利用转基因和非转基因豆粕制作的饲料,喂养吉富罗非鱼,分别于4周、7周取样,对其体重和血液指标进行了检测。实验显示,投喂转基因饲料7周以后,增重率和血清指标,转基因组与非转基因饲料组相比没有显著差异。全血指标中白细胞数目、大血小板比率、平均血小板体积和血小板体积分布宽度4项指标显著高于非转基因饲料组,而且差异达到极显著水平。由以上结果可见,转基因大豆与非转基因大豆相比,对罗非鱼的一些生理过程造成了一定的影响,但是并未对其生长造成可见的影响。分别于投喂1h、4h和8h以后取罗非鱼胃内容物、肠道内容物和粪便,并分别于4周、7周和继续饥饿2周后,取罗非鱼不同组织,提取DNA,用巢式PCR法检测转基因大豆中的外源基因在各种组织中的分布,结果显示在胃内容物、肠内容物、粪便、心脏、肝脏、胃、肠、卵巢、精巢、脑、鳃丝、脾脏、胆囊、肌肉等不同部位的DNA中都能检测到外源基因的存在,说明转基因大豆中的外源DNA并不能被罗非鱼的消化道完全降解,其DNA片段可能通过消化吸收转移到鱼体的各种组织。在投喂转基因饲料7周以后以及停止投喂饥饿2周以后分离水体中的微生物,提取其DNA,进行转基因检测。结果显示在所分离纯化的各种微生物中都没有检测到转基因大豆中外源基因35S-EPSPS的存在。
Resumo:
Using the LAMP method, a highly specific and sensitive detection system for genetically modified soybean (Roundup Ready) was designed. In this detection system, a set of four primers was designed by targeting the exogenous 35S epsps gene. Target DNA was amplified and visualized on agarose gel within 45 min under isothermal conditions at 65 degrees C. Without gel electrophoresis, the LAMP amplicon was visualized directly in the reaction tube by the addition of SYBR Green I for naked-eye inspection. The detection sensitivity of LAMP was 10-fold higher than the nested PCR established in our laboratory. Moreover, the LAMP method was much quicker, taking only 70 min, as compared with 300 min for nested PCR to complete the analysis of the GM soybean. Compared with traditional PCR approaches, the LAMP procedure is faster and more sensitive, and there is no need for a special PCR machine or electrophoresis equipment. Hence, this method can be a very useful tool for GMO detection and is particularly convenient for fast screening.
Resumo:
N'-coumaroyl spermidine (NlCSpd) is a plant derived chemical which is proposed to belong to a class of low molecular weight neuroactive substances called phenolic polyamines. NlCSpd is stnicturally similar to glutamate receptor blocking toxins found in certain spiders and wasps, such as JSTX-3 and NSTX-3 found in Nephila spiders. The goal of the present study was to determine if plant-derived phenolic polyamines act like other structurally related chemicals found in Arthropod venoms, such as JSTX-3, and whether they can be classified in the same pharmacological group as the spider and wasp toxins. A comparison was made to determine the relative potencies of various phenolic polyamines fi-om plants and insect venoms. This comparison was done by measuring the effect of various concentrations ofNlCSpd on the amplitude of excitatory postsynaptic potentials (EPSPs) elicited in muscle of the crayfish Proccanbarus clarkii. NlCSpd was also tested on L-glutamate induced potentials to determine if a postsynaptic component to sj^naptic block occurs. NlCSpd and an analogue with an a longer polyamine chain, NlCSpm, blocked EPSPs in a dose dependent manner, NlCSpd having an IC50 of lOOnM. NlCSpd also blocked L-glutamate induced potentials. The two main components of the NlCSpd molecule alone are insufficient for activity. NlCSpd acts postsynaptically by interfering with crayfish glutamatergic synaptic transmission, likely blocking glutamate receptors by interacting with the same site(s) as other phenolic polyamines. Certain moieties on the polyamines molecule are necessary for activity while others are not.
The role of cyclic nucleotides in modulation of crayfish neuromuscular junctions by a neuropeptide /
Resumo:
DF2, a heptapeptide, is a member of the family of FMRFamide-like peptides and has been shown to increase the amount of transmitter released at neuromuscular junctions of the crayfish, Procambarus clarkit Recent evidence has shown that protein kinase C (PKC), calcium/calmodulin-dependent protein kinase II (CaMKII) and the cAMPdependent protein kinase (PKA) play a role in the neuromodulatory pathway of DF2. The involvement of these kinases led to the prediction that a G-protein-coupled receptor (GPCR) is activated by DF2 due to the role that each kinase plays in traditional GPCR pathways seen in other organisms and in other cells. G-proteins can also act on an enzyme that generates cyclic guanosine monophosphate (cGMP) which mediates its effects through a cGMP-dependent protein kinase (PKG). This thesis addresses the question of whether or not DF2's effects on synaptic transmission in crayfish are mediated by the cyclic nucleotides cAMP and cGMP. The effects of DF2 on synaptic transmission were examined using deep abdominal extensor muscles of the crayfish Procambarus clarkii. An identified motor neuron was stimulated, and excitatory post-synaptic potentials (EPSPs) were recorded in abdominal extensor muscle LI . A number of activators and inhibitors were used to determine whether or not cAMP, PKA, cGMP and PKG mediate the effect of this peptide. Chemicals that are known to activate PKA (Sp-cAMPS) and/or PKG (8-pCPTcGMP) mimic and potentiate DF2's effect by increasing EPSP amplitude. Inhibitors of either PKA (Rp-cAMPS) or PKG (Rp-8-pCPT-cGMPS) block a portion of the increase in EPSP amplitude induced by the peptide. When both kinase inhibitors are applied simultaneously, the entire effect of DF2 on EPSPs is blocked. The PKG inhibitor blocks the effects of a PKG activator but does not alter the effect of a PKA activator on EPSP amplitude. Thus, the PKG inhibitor appears to be relatively specific for PKG. A trend in the data suggests that the PKA inhibitor blocks a portion of the response elicited by the PKG activator. Thus, the PKA inhibitor may be less specific for PKA. Phosphodiesterase inhibitors, which are known to inhibit the breakdown of cAMP (IBMX) and/or cGMP (mdBAMQ), potentiate the effect of the peptide. These results support the hypothesis that cAMP and cGMP, acting through their respective protein kinase enzymes, mediate the ability of DFi to increase transmitter output.
Resumo:
The activation of presynaptic G protein-coupled receptors (GPCRs) is widely reported to inhibit transmitter release; however, the lack of accessibility of many presynaptic terminals has limited direct analysis of signalling mediators. We studied GPCR-mediated inhibition of fast cholinergic transmission between superior cervical ganglion neurones (SCGNs) in culture. The adrenoceptor agonist noradrenaline (NA) caused a dose-related reduction in evoked excitatory postsynaptic potentials (EPSPs). NA-induced EPSP decrease was accompanied by effects on the presynaptic action potential (AP), reducing AP duration and amplitude of the after-hyperpolarization (AHP), without affecting the pre- and postsynaptic membrane potential. All effects of NA were blocked by yohimbine and synaptic transmission was reduced by clonidine, consistent with an action at presynaptic alpha 2-adrenoceptors. NA-induced inhibition of transmission was sensitive to pre-incubation of SCGNs with pertussis toxin (PTX), implicating the involvement of G alpha(i)/(o)beta y subunits. Expression of G alpha transducin, an agent which sequesters G protein beta gamma (G beta y) subunits, in the presynaptic neurone caused a time-dependent attenuation of NA-induced inhibition. Injection of purified G beta gamma subunits into the presynaptic neurone inhibited transmission, and also reduced the AHP amplitude. Furthermore, NA-induced inhibition was occluded by pre-injection of G beta gamma subunits. The Ca2+ channel blocker Cd2+ mimicked NA effects on transmitter release. Cd2+, NA and G beta gamma subunits also inhibited somatic Ca2+ current. In contrast to effects on AP-evoked transmitter release, NA had no clear action on AP-independent EPSPs induced by hypertonic solutions. These results demonstrate that G beta gamma subunits functionally mediate inhibition of transmitter release by alpha 2-adrenoceptors and represent important regulators of synaptic transmission at mammalian presynaptic terminals.
Resumo:
We are studying two enzymes from the shikimate pathway, dehydroquinate synthase (DHQS) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Both enzymes have been the subject of numerous studies to elucidate their reaction mechanisms. Crystal structures of DHQS and EPSPS in the presence and absence of substrates, cofactors and/or inhibitors are now available. These structures reveal movements of domains, rearrangements of loops and changes in side-chain positions necessary for the formation of a catalytically competent active site. The potential for using complementary small-angle X-ray scattering (SAXS) studies to confirm the presence of these structural differences in solution has also been explored. Comparative analysis of crystal structures, in the presence and absence of ligands, has revealed structural features critical for substrate-binding and catalysis. We have also analysed these structures by generating GRID energy maps to detect favourable binding sites. The combination of X-ray crystallography, SAXS and computational techniques provides an enhanced analysis of structural features important for the function of these complex enzymes.
Resumo:
Mast cells that are in close proximity to autonomic and enteric nerves release several mediators that cause neuronal hyperexcitability. This study examined whether mast cell tryptase evokes acute and long-term hyperexcitability in submucosal neurons from the guinea-pig ileum by activating proteinase-activated receptor 2 (PAR2) on these neurons. We detected the expression of PAR2 in the submucosal plexus using RT-PCR. Most submucosal neurons displayed PAR2 immunoreactivity, including those colocalizing VIP. Brief (minutes) application of selective PAR2 agonists, including trypsin, the activating peptide SL-NH2 and mast cell tryptase, evoked depolarizations of the submucosal neurons, as measured with intracellular recording techniques. The membrane potential returned to resting values following washout of agonists, but most neurons were hyperexcitable for the duration of recordings (> 30 min-hours) and exhibited an increased input resistance and amplitude of fast EPSPs. Trypsin, in the presence of soybean trypsin inhibitor, and the reverse sequence of the activating peptide (LR-NH2) had no effect on neuronal membrane potential or long-term excitability. Degranulation of mast cells in the presence of antagonists of established excitatory mast cell mediators (histamine, 5-HT, prostaglandins) also caused depolarization, and following washout of antigen, long-term excitation was observed. Mast cell degranulation resulted in the release of proteases, which desensitized neurons to other agonists of PAR2. Our results suggest that proteases from degranulated mast cells cleave PAR2 on submucosal neurons to cause acute and long-term hyperexcitability. This signalling pathway between immune cells and neurons is a previously unrecognized mechanism that could contribute to chronic alterations in visceral function.
Resumo:
Voltage-gated potassium (Kv) channels are essential components of neuronal excitability. The Kv3.4 channel protein is widely distributed throughout the central nervous system (CNS), where it can form heteromeric or homomeric Kv3 channels. Electrophysiological studies reported here highlight a functional role for this channel protein within neurons of the dorsal vagal nucleus (DVN). Current clamp experiments revealed that blood depressing substance (BDS) and intracellular dialysis of an anti-Kv3.4 antibody prolonged the action potential duration. In addition, a BDS sensitive, voltage-dependent, slowly inactivating outward current was observed in voltage clamp recordings from DVN neurons. Electrical stimulation of the solitary tract evoked EPSPs and IPSPs in DVN neurons and BDS increased the average amplitude and decreased the paired pulse ratio, consistent with a presynaptic site of action. This presynaptic modulation was action potential dependent as revealed by ongoing synaptic activity. Given the role of the Kv3 proteins in shaping neuronal excitability, these data highlight a role for homomeric Kv3.4 channels in spike timing and neurotransmitter release in low frequency firing neurons of the DVN.
Resumo:
Sensory afferent signals from neck muscles have been postulated to influence central cardiorespiratory control as components of postural reflexes, but neuronal pathways for this action have not been identified. The intermedius nucleus of the medulla (InM) is a target of neck muscle spindle afferents and is ideally located to influence such reflexes but is poorly investigated. To aid identification of the nucleus, we initially produced three-dimensional reconstructions of the InM in both mouse and rat. Neurochemical analysis including transgenic reporter mice expressing green fluorescent protein in GABA-synthesizing neurons, immunohistochemistry, and in situ hybridization revealed that the InM is neurochemically diverse, containing GABAegric and glutamatergic neurons with some degree of colocalization with parvalbumin, neuronal nitric oxide synthase, and calretinin. Projections from the InM to the nucleus tractus solitarius (NTS) were studied electrophysiologically in rat brainstem slices. Electrical stimulation of the NTS resulted in antidromically activated action potentials within InM neurons. In addition, electrical stimulation of the InM resulted in EPSPs that were mediated by excitatory amino acids and IPSPs mediated solely by GABA(A) receptors or by GABA(A) and glycine receptors. Chemical stimulation of the InM resulted in (1) a depolarization of NTS neurons that were blocked by NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonoamide) or kynurenic acid and (2) a hyperpolarization of NTS neurons that were blocked by bicuculline. Thus, the InM contains neurochemically diverse neurons and sends both excitatory and inhibitory projections to the NTS. These data provide a novel pathway that may underlie possible reflex changes in autonomic variables after neck muscle spindle afferent activation.