993 resultados para EPOXY COMPOSITES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites with carbon nanotubes are becoming increasingly used in energy storage and electronic devices, due to incorporated excellent properties from carbon nanotubes and polymers. Although their properties make them more attractive than conventional smart materials, their electrical properties are found to be temperature-dependent which is important to consider for the design of devices. To study the effects of temperature in electrically conductive multi-wall carbon nanotube/epoxy composites, thin films were prepared and the effect of temperature on the resistivity, thermal properties and Raman spectral characteristics of the composite films was evaluated. Resistivity-temperature profiles showed three distinct regions in as-cured samples and only two regions in samples whose thermal histories had been erased. In the vicinity of the glass transition temperature, the as-cured composites exhibited pronounced resistivity and enthalpic relaxation peaks, which both disappeared after erasing the composites’ thermal histories by temperature cycling. Combined DSC, Raman spectroscopy, and resistivity-temperature analyses indicated that this phenomenon can be attributed to the physical aging of the epoxy matrix and that, in the region of the observed thermal history-dependent resistivity peaks, structural rearrangement of the conductive carbon nanotube network occurs through a volume expansion/relaxation process. These results have led to an overall greater understanding of the temperature-dependent behaviour of conductive carbon nanotube/epoxy composites, including the positive temperature coefficient effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of resistance-type strain sensors has been fabricated from metal-coated carbon nanofiller (CNF)/epoxy composites. Two nanofillers, i.e., multi-walled carbon nanotubes and vapor growth carbon fibers (VGCFs) with nickel, copper and silver coatings were used. The ultrahigh strain sensitivity was observed in these novel sensors as compared to the sensors made from the CNFs without metal-coating, and conventional strain gauges. In terms of gauge factor, the sensor made of VGCFs with silver coating is estimated to be 155, which is around 80 times higher than that in a metal-foil strain gauge. The possible mechanism responsible for the high sensitivity and its dependence with the networks of the CNFs with and without metal-coating and the geometries of the CNFs were thoroughly investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined. The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of particulate additions of alumina on the flexural properties of glass-fabric/epoxy composites was studied. The additions improved translaminar flexural strength, while decreasing interlaminar strength. The translaminar bending modulus showed an increasing trend whereas its interlaminar value showed a decrease, up to additions of 3 vol%. The mechanisms of deformation and the fracture features have been discussed with the aid of scanning electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper is based on a study to develop carbon-glass epoxy hybrid composites with desirable thermal properties for applications at cryogenic temperatures. It analyzes the coefficient of thermal expansion of carbon-epoxy and glass-epoxy composite materials and compares it with the properties of carbon-glass epoxy hybrid composites in the temperature range 300 K to 125K. Urethane modified epoxy matrix system is used to make the composite specimens suitable for use even for temperatures as low as 20K. It is noted that the lay-up with 80% of carbon fibers in the total volume fraction of fibers oriented at 30 degrees and 20% of glass fibers oriented at 0 degrees yields near to zero coefficient of thermal expansion as the temperature is lowered from ambient to 125 K. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flexural strength of the Kevlar/epoxy composite laminates, in the pres ence of unfilled and filled circular defects, was studied. Circular drillings of two different diameters extending up to the neutral axis from the compression face as well as through holes, at three different positions from the midspan, have been considered as simplified cases of dents and defects. Bonded buttons of aluminium metal have been tested and shown to yield a strength-wise compensation for test samples with depressions. Macrography of the failed specimens is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper reports the failure features observed in low mass repeatedly (pendulum) impacted glass epoxy composites with and without the mid section having either 2-layers or 3-layers of flexible foam. Features such as through width and inclined cracks as well as adhering of foam observed in the experiments are explained. The significance of the foam material in modifying the impact response of the composite is stressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

foam, either stacked together as three layers (MC) or inserted at three different positions (3L) while arranging the stacking sequence during the fabrication of glass fiber-epoxy composites, form the subject of investigation. This stacking variation resulted in a different interfacial area between these foam materials and the glass-epoxy regions in the laminates. This area in designed to be maximum for the 3L variety. The energy of impact being high enough to cause development of the crack in the samples, how the change in interfacial area affects the traverse of the crack front and the failure feature of the laminated composite are reported in the form of photomacrographs in this work. The results point to significant changes for the impact data, like for instance the peak load attained by the different samples, through thickness crack propagation and tensile fracture features on the non-impacted end for the plain variety, separation about the mid-zone for the MC laminates and two or more layer separations for the 3L variety. The separation for the foam-bearing systems occur invariably at the interface and here again one of the (two identical) interfaces only is chosen for the separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminated composite structures are susceptible to damage under impacts with attendant properly degradation. While studies on damage tolerance behaviour are emphasised and the findings reported, the citations correlating impacts with the fracture features are limited. In the present study, therefore, attempts have been made to depict how the transition of the fracture features take place depending on the type and extent of defect introduced onto the carbon-epoxy system. The test specimens were subjected to differing levels of low energy pendulum impacts with a view to have specimens with varying levels of intial impacts history. Into such specimens, additional defect in the form of slits of varying depths were introduced by a mechanical process. The test coupons were then allowed to fail by impact. The fracture surface was studied under scanning electron microscope. The fractographic features that appear, based on the induced/inserted defects, are presented in this paper. It was noticed that the energy absorbed for final fracture could be associated with the defect introduced into the system. It was also observed that the size of the mechanically inserted defect had a significant influence on the features of the fracture surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The moisture absorption and changes in compression strengths in glass-epoxy (G-E composites without and with discrete quantities of graphite powders introduced into the resin mix prior to its spreading on specific glass fabric (layers) during the lay-up (stacking) sequence forms the subject matter of this report. The results point to higher moisture absorption for graphite bearing specimens. The strengths of graphite-free coupons show a continuous decrease, while the filler bearing ones show an initial rise followed by a drop for larger exposure times. Scanning Fractographic features were examined for an understanding of the process. The observations were explained invoking the effect of matrix plasticizing and the role of interfacial regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate composites based on polymer matrices generally contain fillers, especially those that are abundantly available and are cheaper. The inclusion of these, besides improving the properties, makes the system costwise viable, In the present study, fly ash was tried as a filler in epoxy. The filler particle surfaces were modified using three chemical surface treatment techniques in order to elicit the effect of adhesion at the interface on the mechanical properties of these composites. The compatibilizing of the filler with the use of a silane coupling agent yielded the best compression strength values. Scanning Electron Microscopy (SEM) has been used to characterize and supplement the mechanical test data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epoxy systems containing HTBN rubber material and reinforced with E-glass fibres, exposed to a fixed time duration in three separate media were subjected to compressive mode of deformation. The yield stress and fractographic features noted on the compression failed samples are reported in this work. The experiment reveals that the seawater exposed sample exhibits a drop in strength compared to dry (unexposed) sample. This kind of drop is maintained if the media is changed from seawater to distilled water. When HCl is included in seawater. the experiment shows a small rise in strength value. These changes have been attributed to various factors like medium ingress into samples assisting interface failure, the larger-sized Cl- influencing the extent of diffusion of medium into system and finally their participation in the deformation phenomena. The fractographic features reveal interface separations that show either scattered debris or a cleaner surface or display a whitish-coated matrix region depending on whether the tests are done on unexposed samples or on ones following the immersion in the media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact behaviour of epoxy specimens containing 20% by volume of fly ash particles without (coded, FA20) and with surface enveloped by starch in dry (FAS20) and water-ingresses (FASM20) conditions is studied. The resulting behavioural patterns are documented and compared to the composites containing as received fly ash particles. The data on unreinforced (i.e. neat) epoxy system (designated, NE) are also included. Samples with starch covering for the fillers whether tested in dry or wet conditions (i.e. FAS20 & FASM20) showed greater absorption of energy and maximum load compared to the ones derived on composites having as received fillers tested in unexposed (dry) condition (FA20). Ductility Index, D.I. on the other hand, showed a reversal in trends; the energy absorbed was highest for NE and lowest FA20 samples. Scanning microscopic examination of the fracture features was undertaken to correlate the microstructure to impact response.