950 resultados para ENZYME-ACTIVITY
Resumo:
Sheep liver 5,10-methylenetetrahydrofolate reductase was subjected to specific chemical modification with phenylglyoxal, diethyl pyrocarbonate and N-bromosuccinimide. The second-order rate constants for inactivation were calculated to be 54 M-1 X min-1, 103 M-1 X min-1 and 154 M-1 X min-1 respectively. This inactivation could be prevented by incubation with substrates or products, suggesting that the residues modified, namely arginine, histidine and tryptophan, are essential for enzyme activity.
Resumo:
Muscle glycogen exists in two forms: low molecular weight pro-glycogen and high molecular weight macro-glycogen. The degradation of glycogen to glucose 1 phosphate and free glucose is catalysed by glycogen phosphorylase together with glycogen debranching enzyme (GDE). The process in which glycogen is broken down via anaerobic pathways to lactate, results in the acidification of the muscles and has a great influence on meat quality. Thus, the overall aim of this thesis was to characterise the post mortem action of GDE in muscles of meat production animals (pigs, cattle and chickens). Interest was focused on the differences in GDE activity between fast twitch glycolytic muscles and slow twitch oxidative muscles. The effects of pH, temperature, RN genotype (PRKAG3 gene), and of time post mortem on GDE activity were also investigated. This thesis showed that there are differences in GDE activity between animal species and between different muscles of an animal. It was shown that in pigs and cattle, higher GDE activity and phosphorylase activity exists in the fast twitch glycolytic muscles than in slow twitch oxidative muscles of the same animal. Thus, the high activity of these enzymes enables a faster rate of glycogenolysis in glycolytic M. longissimus dorsi compared to oxidative M. masseter. In chicken muscles, the GDE activity was low compared to pig or cattle muscles. Furthermore, the GDE activity in the glycolytic M. pectoralis superficialis was lower than in more oxidative M. quadriceps femoris despite the high phosphorylase activity in the former. The relative ratios between phosphorylase and GDE activity were higher in fast twitch glycolytic muscles than in slow twitch oxidative muscles of all studied animals. This suggests that the relatively low GDE activity compared to the phosphorylase activity in fast twitch glycolytic muscles may be a protection mechanism in living muscle against a very fast pH decrease. Chilling significantly decreased GDE activity and below 15 C porcine GDE was almost inactive. The effect of pH on GDE activity was only minor at the range normally found in post mortem muscles (pH 7.4 to 5.0). The GDE activity remained level for several hours after slaughter. During the first hours post mortem, GDE activity was similar in RN- carrier pigs and in wild type pigs. However, the GDE activity declined faster in M. longissimus dorsi from wild type pigs than in the RN carrier pigs, the difference between genotypes was significant after 24 h post mortem. Pro-glycogen and macro-glycogen contents were higher, pH decrease was faster and ultimate pH was lower in RN- carrier pigs than in wild type pigs. In the RN- carriers, the prolonged high GDE activity level may enable an extended pH decrease and lower ultimate pH in their muscles. In conclusion, GDE is not the main factor determining the rate or the extent of post mortem glycogenolysis, but under certain conditions, such as in very fast chilling, the inhibition of GDE activity in meat may reduce the rate of pH decrease and result in higher ultimate pH. The rate and extent of pH decrease affects several meat quality traits.
Resumo:
The cholesterol side-chain cleavage enzyme activity is decreased considerably at the mild stage of vitamin A deficiency in rat testes and ovaries and the decrease in activity becomes more pronounced with progress of deficiency. Supplementation of the deficient rats with retinyl acetate, but not retinoic acid, restores the enzyme activity to normal values. The cholesterol side-chain cleavage enzyme of adrenals is not affected by any of the above treatments.
Resumo:
The hydrolysis of beta-lactam antibiotics using zinc-containing metallo-beta-lactamases (m beta l) is one of the major bacterial defense systems. These enzymes can catalyze the hydrolysis of a variety of antibiotics including the latest generation of cephalosporins, cephamycins, and imipenem. It is shown in this paper that the cephalosporins having heterocyclic - SR side chains are less prone to m beta l-mediated hydrolysis than the antibiotics that do not have such side chains. This is partly due to the inhibition of enzyme activity by the thione moieties eliminated during hydrolysis. When the enzymatic hydrolysis of oxacillin was carried out in the presence of heterocyclic thiones such as MU, MDT, DMETT, and MMA, the catalytic activity of the enzyme was inhibited significantly by these compounds. Although the heterocyclic - SR moieties eliminated from the beta-lactams upon hydrolysis undergo a rapid tautomerism between thione and thiol forms, these compounds act as thiolate ligands toward zinc(II) ions. The structural characterization of two model tetranuclear zinc(II) thiolate complexes indicates that the -SR side chains eliminated from the antibiotics may interact with the zinc(II) metal center of m beta l through their sulfur atoms.
Resumo:
Angiotensin converting enzyme (ACE) regulates the blood pressure by converting angiotensin I to angiotensin II and bradykinin to bradykinin 1-7. These two reactions elevate the blood pressure as angiotensin II and bradykinin are vasoconstrictory and vasodilatory hormones, respectively. Therefore, inhibition of ACE is an important strategy for the treatment of hypertension. The natural substrates of ACE, i.e., angiotensin II and bradykinin, contain a Pro-Phe motif near the site of hydrolysis. Therefore, there may be a Pro-Phe binding pocket at the active site of ACE, which may facilitate the substrate binding. In view of this, we have synthesized a series of thiol-and selenol-containing dipeptides and captopril analogues and studied their ACE inhibition activities. This study reveals that both the selenol or thiol moiety and proline residues are essential for ACE inhibition. Although the introduction of a Phe residue to captopril and its selenium analogue considerably reduces the inhibitory effect, there appears to be a Phe binding pocket at the active site of ACE.
Resumo:
beta-lactoglobulin is a rich source of bioactive peptides. The LC-MS separated tryptic peptides of buffalo colostrum beta-lactoglobulin (BLG-col) were computed based on MS-MS fragmentation for de novo sequencing. Among the selected peptides (P1-P8), a variant was detected with methionine at position 74 instead of glutamate. The sequences of two peptides were identical to hypocholesterolemic peptides whereas the remaining peptides were in accordance with buffalo milk beta-lactoglobulin. Comparative sequence analysis of BLG-col to milk beta-lactoglobulin was carried out using CLUSTALW2 and a molecular model for BLG-col was constructed (PMDB ID-PM0076812). The synthesized variant pentapeptide (IIAMK, m/z-576 Da) was found to inhibit angiotensin I-converting enzyme (ACE) with an IC50 of 498 +/- 2 mu M, which was rationalized through docking simulations using Molgrow virtual docker. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.
Resumo:
EEnzyme activity of commercial glucose oxidase was enhanced after purification through a strong anionic exchange resin. In order to get a better insight into this phenomenon, surface pressure–area ( –A) isotherms and surface pressure–time ( –t) isotherms was used to study the interaction and the absorption at different pH values of the subphases between octadecylamine and glucose oxidase purified by a styrene system quaternary ammonium type strongly basic anionic exchange resin. Circular dichroism (CD), electrophoresis and enzyme activity measurements were conducted to study these phenomena. A preliminary hypothesis has been suggested to explain why the enzyme activity of purified glucose oxidase was higher than that of the commercial one. © 2002 Elsevier Science B.V. All rights reserved.
Soil enzyme activity changes in different-aged spruce forests of the eastern Qinghai-Tibetan plateau
Resumo:
This study was done in Shahid Kiani Marine Aquaculture Development Center, Choebde, Abadan in order to evaluate the effects of Pediiococcus acidilactici, Lactococcus lactis and vitamin C on growth performance, survival, enzymatic activities and immune responses of L. vannamei during three months. Treatments were included control group, Pediiococcus and Lactococcus treatments which fed with diet containing 1×10P9P cfu gP_1P bacteria and vitamin C. At the end of the experiment, the growth factors, immune parameters, digestive enzymes, intestinal, histology of intestine, carcasses and microbial flora (bacterial total count and lactic acid count) were evaluated. The results indicated that administration of lactobacillus had significant effects on the growth factors as the highest weight, increase specific growth rate, relative growth rate, feed conversion ratio and protein efficiency in the shrimps received pediococcus and then Lactococcus (P<0.05). The best immune function was also observed in the shrimps fed by probiotics, so that proteins and hemoglobin̛ hemolymph, phenoloxidase activity and challenged with V. parahaemolyticus showed a statistical difference comparing to the control group and the group received vitamin C (P<0.05). Some digestive enzymes, in pediococcus treatment showed a significant increase when compared to other treatments (P<0.05). Significant changes in bacterial intestinal flora were observed in probiotic groups compared with control and vitamin C groups (P < 0.05). Histological results showed the positive effects of probiotics in the gut (P < 0.05). While these supplements cannot caused to significant impacts on the shrimp carcass composition (P ˃ 0.05). As a result pediococcus group had the best performance among treatments.
Resumo:
The present research studied the effects of age and dietary protein level on pepsin, trypsin and amylase activity and their mRNA level in Petteobagrus fulvidraco larvae from 3 to 26 days after hatch (DAH). Three DAH larvae were fed three isoenergetic diets, containing 42.8% (CP 43), 47.3% (CP 47) and 52.8% (CP 53) crude protein. Live food (newly hatched Artemia, unenriched) was included as a control. The effects of age on enzyme activity and mRNA were as follows: pepsin and trypsin activity in all treatment groups showed a significant (P < 0.05) increase at the beginning and decrease later although the timing of decrease was not the same among treatment groups and between the digestive enzymes. Pepsin and trypsin mRNA level followed the pattern of their respective enzyme changes. Age significantly affected amylase activity (P < 0.05) while age had no effect on amylase mRNA during the experimental period. The four diets significantly (P < 0.05) affected activity and mRNA level of pepsin and trypsin. Diets did not affect amylase activity or mRNA level. These results suggest that the effects of age on pepsin and trypsin gene expressions are at the transcriptional level. Dietary protein level does affect pepsin and trypsin gene expression in the early life of P. fulvidraco. There were no transcriptional effects on amylase gene expression. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
IEECAS SKLLQG
Resumo:
Uptake of Escherichia coli and Enterococcus faecalis and variations of trypsin amylase activity acid phosphatase and superoxide dismutase in tissue of the scallop Patinopecten yessoensis were detected. The results showed that P. yessoensis accumulated E. faecalis in larger numbers and more rapidly than E. coli, both with the highest concentration in the digestive tract and lowest in hemolymph. Compared to E. coil, all scallops exposed to E. faecalis showed significantly higher trypsin and AMS activity. SOD activity in hemocytes and ACP activity in hemolymph was significantly higher in the treatments with 5 log(10)CFU/ml E. colt than with E. faecalis. But no significant differences in ACP activity of P. yessoensis exposed to a 3 log(10)CFU/ml inoculum of both bacteria were recorded. In conclusion, the mass retention of gut microflora in P. yessoensis is positively correlated with digestive enzymes activity and negatively correlated with ACP activity in the hemocyte. (C) 2010 Published by Elsevier Ltd.
Resumo:
The effect of water temperature on gut mass and digestive enzyme activity in sea cucumber Apostichopus japonicus, including relative gut mass (RGM), amylase, lipase, pepsin and trypsin activities were studied at temperatures of 7, 14, 21, and 28A degrees C over a period of 40 days. Results show that RGM significantly decreased after 40 days at 21A degrees C and markedly decreased over the whole experiment period at 28A degrees C; however, no significant effect of duration was observed at 7 or 14A degrees C. At 14A degrees C, trypsin activity significantly decreased over 10 and 20 days, then increased; amylase and trypsin activity significantly decreased after 40 days at 28A degrees C. However, no significant effect of duration was found on amylase, pepsin or trypsin activities in the other temperature treatment groups. At 28A degrees C, lipase activity peaked in 20 days and then markedly decreased to a minimum at the end of the experiment. On the other hand, pepsin activity at 28A degrees C continuously increased over the whole experimental period. Principle component analysis showed that sea cucumbers on day 40 in the 21A degrees C group and in the previous 20 days in the 28A degrees C group were in the prophase of aestivation. At 28A degrees C, sea cucumbers aestivated at 30-40 days after the start of the experiment. It is concluded that the effect of temperature on the digestion of A. japonicus is comparatively weak within a specific range of water temperatures and aestivation behavior is accompanied by significant changes in RGM and digestive enzyme activities.