78 resultados para ENTEROCYTES
Resumo:
Whole animal studies have indicated that Ca2+ uptake by the gastrointestinal tract is regulated by the action of parathyroid hormone-related peptide (PTHrP) in teleost fish. We have characterised PTH receptors (PTHR) in piscine enterocytes and established, by using aminoterminal PTHrP peptides, the amino acid residues important for receptor activation and for stabilising the ligand/receptor complex. Ligand binding of 125I-(1–35tyr) PTHrP to the membrane fraction of isolated sea bream enterocytes revealed the existence of a single saturable high-affinity receptor (KD=2.59 nM; Bmax=71 fmol/mg protein). Reverse transcription/polymerase chain reaction with specific primers for sea bream PTH1R and PTH3R confirmed the mRNA expression of only the later receptor. Fugu (1–34) PTHrP increased cAMP levels in enterocytes but had no effect on total inositol phosphate accumulation. The aminoterminal peptides (2–34)PTHrP, (3–34)PTHrP and (7–34) PTHrP bound efficiently to the receptor but were severely defective in stimulating cAMP in enterocyte cells indicating that the first six residues of piscine (1–34)PTHrP, although not important for receptor binding, are essential for activation of the adenylate cyclase/phosphokinase A (AC-PKA)-receptor-coupled intracellular signalling pathway. Therefore, PTHrP in teleosts acts on the gastrointestinal tract through PTH3R and the AC-PKA intracellular signalling pathway and might regulate Ca2+ uptake at this site. Ligand-receptor binding and activity throughout the vertebrates appears to be allocated to the same amino acid residues of the amino-terminal domain of the PTHrP molecule.
Resumo:
A total of 640 one-day-old male Cobb chicks were used to evaluate the effects of early feed restriction and glutamine on villi density and tip surface of enterocytes in the small intestine of broilers. A two-factor factorial experimental design with glutamine and feed restriction as main factors was used. Treatments consisted of quantitative feed restriction at 30% of ad libitum intake from 7 to 14 days of age, and glutamine addition at 1% in the diet from 1 to 28 days of age. Sections of the small intestine (duodenum, jejunum, ileum) were collected at 14 and 21 days of age for analyses by scanning and transmission electron microscopy. Villi density decreased with age and increased in cranial-caudal direction. Glutamine increased villi density in the small intestine. Microvilli density and height decreased with age. Glutamine increased microvilli width. The jejunum was the segment with the largest surface area of the tip of the enterocytes, followed by the duodenum and the ileum. Feed restriction decreased the surface area of the tip of the enterocytes in the small intestine at 14 and at 21 days of age. Glutamine supplemented in the feed increased the surface area of the tip of the enterocytes of the jejunum and ileum at 21 days of age. © Asian Network for Scientific Information, 2007.
Resumo:
Liver receptor homolog-1 (LRH-1) is a nuclear receptor involved in intestinal lipid homeostasis and cell proliferation. Here we show that haploinsufficiency of LRH-1 predisposes mice to the development of intestinal inflammation. Besides the increased inflammatory response, LRH-1 heterozygous mice exposed to 2,4,6-trinitrobenzene sulfonic acid show lower local corticosterone production as a result of an impaired intestinal expression of the enzymes CYP11A1 and CYP11B1, which control the local synthesis of corticosterone in the intestine. Local glucocorticoid production is strictly enterocyte-dependent because it is robustly reduced in epithelium-specific LRH-1-deficient mice. Consistent with these findings, colon biopsies of patients with Crohn's disease and ulcerative colitis show reduced expression of LRH-1 and genes involved in the production of glucocorticoids. Hence, LRH-1 regulates intestinal immunity in response to immunological stress by triggering local glucocorticoid production. These findings underscore the importance of LRH-1 in the control of intestinal inflammation and the pathogenesis of inflammatory bowel disease.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) are the causative agent of hemolytic-uremic syndrome. In the first stage of the infection, EHEC interact with human enterocytes to modulate the innate immune response. Inducible NO synthase (iNOS)-derived NO is a critical mediator of the inflammatory response of the infected intestinal mucosa. We therefore aimed to analyze the role of EHEC on iNOS induction in human epithelial cell lines. In this regard, we show that EHEC down-regulate IFN-gamma-induced iNOS mRNA expression and NO production in Hct-8, Caco-2, and T84 cells. This inhibitory effect occurs through the decrease of STAT-1 activation. In parallel, we demonstrate that EHEC stimulate the rapid inducible expression of the gene hmox-1 that encodes for the enzyme heme oxygenase-1 (HO-1). Knock-down of hmox-1 gene expression by small interfering RNA or the blockade of HO-1 activity by zinc protoporphyrin IX abrogated the EHEC-dependent inhibition of STAT-1 activation and iNOS mRNA expression in activated human enterocytes. These results highlight a new strategy elaborated by EHEC to control the host innate immune response.
Resumo:
Loss of p53 is considered to allow progression of colorectal tumors from the adenoma to the carcinoma stage. Using mice with an intestinal epithelial cell (IEC)-specific p53 deletion, we demonstrate that loss of p53 alone is insufficient to initiate intestinal tumorigenesis but markedly enhances carcinogen-induced tumor incidence and leads to invasive cancer and lymph node metastasis. Whereas p53 controls DNA damage and IEC survival during the initiation stage, loss of p53 during tumor progression is associated with increased intestinal permeability, causing formation of an NF-κB-dependent inflammatory microenvironment and the induction of epithelial-mesenchymal transition. Thus, we propose a p53-controlled tumor-suppressive function that is independent of its well-established role in cell-cycle regulation, apoptosis, and senescence.
Resumo:
Proteinase-activated receptor 2 (PAR-2) is a recently characterized G-protein coupled receptor that is cleaved and activated by pancreatic trypsin. Trypsin is usually considered a digestive enzyme in the intestinal lumen. We examined the hypothesis that trypsin, at concentrations normally present in the lumen of the small intestine, is also a signaling molecule that specifically regulates enterocytes by activating PAR-2. PAR-2 mRNA was highly expressed in the mucosa of the small intestine and in an enterocyte cell line. Immunoreactive PAR-2 was detected at the apical membrane of enterocytes, where it could be cleaved by luminal trypsin. Physiological concentrations of pancreatic trypsin and a peptide corresponding to the tethered ligand of PAR-2, which is exposed by trypsin cleavage, stimulated generation of inositol 1,4,5-trisphosphate, arachidonic acid release, and secretion of prostaglandin E2 and F1α from enterocytes and a transfected cell line. Application of trypsin to the apical membrane of enterocytes and to the mucosal surface of everted sacs of jejunum also stimulated prostaglandin E2 secretion. Thus, luminal trypsin activates PAR-2 at the apical membrane of enterocytes to stimulate secretion of eicosanoids, which regulate multiple cell types in a paracrine and autocrine manner. We conclude that trypsin is a signaling molecule that specifically regulates enterocytes by triggering PAR-2.
Resumo:
The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation.
Resumo:
Ureaplasma infection of the amniotic cavity is associated with adverse postnatal intestinal outcomes. We tested whether interleukin-1 (IL-1) signaling underlies intestinal pathology following ureaplasma exposure in fetal sheep. Pregnant ewes received intra-amniotic injections of ureaplasma or culture media for controls at 3, 7, and 14 d before preterm delivery at 124 d gestation (term 150 d). Intra-amniotic injections of recombinant human interleukin IL-1 receptor antagonist (rhIL-1ra) or saline for controls were given 3 h before and every 2 d after Ureaplasma injection. Ureaplasma exposure caused fetal gut inflammation within 7 d with damaged villus epithelium and gut barrier loss. Proliferation, differentiation, and maturation of enterocytes were significantly reduced after 7 d of ureaplasma exposure, leading to severe villus atrophy at 14 d. Inflammation, impaired development and villus atrophy of the fetal gut was largely prevented by intra-uterine rhIL-1ra treatment. These data form the basis for a clinical understanding of the role of ureaplasma in postnatal intestinal pathologies.
Resumo:
The membrane-bound ceruloplasmin homolog hephaestin plays a critical role in intestinal iron absorption. The aims of this study were to clone the rat hephaestin gene and to examine its expression in the gastrointestinal tract in relation to other genes encoding iron transport proteins. The rat hephaestin gene was isolated from intestinal mRNA and was found to encode a protein 96% identical to mouse hephaestin. Analysis by ribonuclease protection assay and Western blotting showed that hephaestin was expressed at high levels throughout the small intestine and colon. Immunofluorescence localized the hephaestin protein to the mature villus enterocytes with little or no expression in the crypts. Variations in iron status had a small but nonsignificant effect on hephaestin expression in the duodenum. The high sequence conservation between rat and mouse hephaestin is consistent with this protein playing a central role in intestinal iron absorption, although its precise function remains to be determined.
Resumo:
BACKGROUND Familial diarrhea disorders are, in most cases, severe and caused by recessive mutations. We describe the cause of a novel dominant disease in 32 members of a Norwegian family. The affected members have chronic diarrhea that is of early onset, is relatively mild, and is associated with increased susceptibility to inflammatory bowel disease, small-bowel obstruction, and esophagitis. METHODS We used linkage analysis, based on arrays with single-nucleotide polymorphisms, to identify a candidate region on chromosome 12 and then sequenced GUCY2C, encoding guanylate cyclase C (GC-C), an intestinal receptor for bacterial heat-stable enterotoxins. We performed exome sequencing of the entire candidate region from three affected family members, to exclude the possibility that mutations in genes other than GUCY2C could cause or contribute to susceptibility to the disease. We carried out functional studies of mutant GC-C using HEK293T cells. RESULTS We identified a heterozygous missense mutation (c.2519G -> T) in GUCY2C in all affected family members and observed no other rare variants in the exons of genes in the candidate region. Exposure of the mutant receptor to its ligands resulted in markedly increased production of cyclic guanosine monophosphate (cGMP). This may cause hyperactivation of the cystic fibrosis transmembrane regulator (CFTR), leading to increased chloride and water secretion from the enterocytes, and may thus explain the chronic diarrhea in the affected family members. CONCLUSIONS Increased GC-C signaling disturbs normal bowel function and appears to have a proinflammatory effect, either through increased chloride secretion or additional effects of elevated cellular cGMP. Further investigation of the relevance of genetic variants affecting the GC-C-CFTR pathway to conditions such as Crohn's disease is warranted. (Funded by Helse Vest Western Norway Regional Health Authority] and the Department of Science and Technology, Government of India.)
Resumo:
Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c(-/-), mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence.
Resumo:
Reconhecida como agente de doença humana em 1982, E.coli enterohemorrágica (EHEC) pode causar diarréia sanguinolenta, colite hemorrágica e síndrome hemolítica urêmica (SHU). EHEC constitui um subgrupo especialmente virulento das E.coli produtoras de toxina de Shiga (Stx). O fator crítico da sua virulência é a toxina Shiga, capaz de interromper a síntese proteica da célula eucariótica. São conhecidos dois subgrupos de Stx, Stx1 e Stx2. Stx1 possui duas variantes Stx1c e Stx1d. Stx2 possui muitas variantes. Estudos epidemiológicos sugerem que cepas com os perfis toxigênicos Stx2 ou Stx2/Stx2c seriam mais frequentemente associadas a pacientes com SHU. Além da expressão de Stx, EHEC do sorotipo O157:H7 colonizam a mucosa intestinal induzindo a formação de lesões denominadas attaching/effacing (A/E). Para a produção da lesão A/E, é necessária a presença de uma ilha de patogenicidade cromossômica denominada LEE, composta por cinco operons, LEE 1 a LEE5. Em LEE 5 são codificadas a adesina intimina e o seu receptor Tir, o qual é translocado por um sistema de secreção tipo III (SSTT) e em LEE 4 são codificadas as proteínas secretadas EspA,B e D. Em EHEC O157:H7 são descritos muitos fatores de virulência, codificados em ilhas de patogenicidade, no cromossomo e no megaplasmídio pO157. Bovinos são o principal reservatório deste patógeno e alimentos de origem bovina e produtos contaminados com fezes de bovinos são causadores de surtos epidêmicos. Em nosso país EHEC O157:H7 é isolada do reservatório animal mas é muito rara a sua ocorrência em doença humana. Notamos que nas cepas bovinas predomina Stx2c, enquanto nas cepas humanas predomina o perfil toxigenico Stx2/Stx2c. Quanto a interação com enterocitos humanos cultivados in vitro (linhagem Caco-2), verificamos que tanto cepas bovinas quanto humanas mostram idêntica capacidade de invadir e persistir no compartimento intracelular das células Caco-2. No entanto, em comparação com as cepas humanas, as cepas bovinas mostram uma reduzida capacidade de produzir lesões A/E. Empregamos qPCR para aferir a transcrição de três diferentes locus (eae, espA e tir) situados nos operons LEE4 e LEE5 de cepas bovinas e humanas, durante a infecção de células Caco-2. Verificamos diferenças na expressão dos genes, especialmente espA, entre cepas bovinas e humanas com maior expressão para estas ultimas, em linha com os achados dos testes FAS. Através de clonagem e expressão de proteínas recombinantes, purificamos as proteínas Eae, EspA e Tir e obtivemos anticorpos específicos, empregados para acompanhar a sua expressão ao longo da infecção de células Caco-2, por imunofluorescencia. Verificamos que as três proteínas são detectadas tanto em cepas bovinas quanto humanas, mas nestas ultimas, a marcação é precoce e torna-se mais intensa com o avanço da infecção. Nossos resultados indicam que cepas EHEC O157:H7 isoladas do reservatório bovino em nosso país apresentam diferenças importantes em relação ao perfil toxigenico e a capacidade de indução de lesões A/E, características apontadas na literatura como relevantes para a virulência do micro-organismo. Por outro lado, nossos achados quanto a capacidade de invadir e multiplicar-se no interior de enterócitos pode explicar a persistência do patógeno no reservatório animal e a sua capacidade de transmissão horizontal.
Resumo:
Iron is required for many microbes and pathogens for their survival and proliferation including Leishmania which cause leishmaniasis. Leishmaniasis is an increasingly serious infectious disease with a wide spectrum of clinical manifestations. These range from localized cutaneous leishmaniasis (CL) lesions to a lethal visceral form. Certain strains such as BALB/c mice fail to control L. major infection and develop progressive lesions and systemic disease. These mice are thought to be a model of non-healing forms of the human disease such as kala-azar or diffuse cutaneous leishmaniasis. Progression of disease in BALB/c mice has been associated with the anemia, in last days of their survival, the progressive anemia is considered to be one of the reasons of their death. Ferroportin (Fpn), a key regulator of iron homeostasis is a conserved membrane protein that exports iron across the duodenal enterocytes as well as macrophages and hepatocytes into the blood circulation. Fpn has also critical influence on survival and proliferation of many microorganisms whose growth is dependent upon iron, thus preparation of Fpn is needed to study the role of iron in immune responses and pathogenesis of micoorganisms. To prepare and characterize a recombinant ferroportin, total RNA was extracted from Indian zebrafish duodenum, and used to synthesize cDNA by RT-PCR. PCR product was first cloned in Topo TA vector and then subcloned into the GFP expression vector pEGFP–N1. The final resulted plasmid (pEGFP-ZFpn) was used for expression of FPN-EGFP protein in Hek 293T cells. The expression was confirmed by fluorescence microscopy and flow cytometery. Recombinant Fpn was further characterized by submission of its predicted amino acid sequences to the TMHMM V2.0 prediction server (hidden Markov model), NetOGlyc 3.1 server and NetNGlyc 3.1 server. Data emphasised that obtained Fpn from indian zebrafish contained eight transmembrane domains with N- and C-termini inside the cytoplasm and harboured 78 mucin-type glycosylated amino acid. The results indicate that the prepared and characterized recombinant Fpn protein has no membrane topology difference compared to other Fpn described by other researcher. Our next aim was to deliver recombinant plasmid (pEGFP-ZFpn) to entrocyte cells. However, naked therapeutic genes are rapidly degraded by nucleases, showing poor cellular uptake, nonspecificity to the target cells, and low transfection efficiency. The development of safe and efficient gene carriers is one of the prerequisites for the success of gene therapy. Chitosan and alginate 139 polymers were used for oral gene carrier because of their biodegradability, biocompatibility and their mucoadhesive and permeability-enhancing properties in the gut. Nanoparticles comprising Alginate/Chitosan polymers were prepared by pregel preparation method. The resulting nanoparticles had a loading efficiency of 95% and average size of 188 nm as confirmed by PCS method and SEM images had showed spherical particles. BALB/c mice were divided to three groups. The first and second group were fed with chitosan/alginate nanoparticles containing the pEGFP-ZFpn and pEGFP plasmid, respectively (30 μgr/mice) and the third group (control) didn’t get any nanoparticles. The result showed BALB/c mice infected by L.major, resulted in higher hematocryte and iron level in pEGFP-ZFpn fed mice than that in other groups. Consentration of cytokines determined by ELISA showed lower levels of IL-4 and IL-10 and higher levels of IFN-γ/IL-4 and IFN-γ/IL-10 ratios in pEGFP-ZFpn fed mice than that in other groups. Morover more limited increase of footpad thickness and significant reduction of viable parasites in lymph node was seen in pEGFP-ZFpn fed mice. The results showed the first group exhibited a highr hematocryte and iron compared to the other groups. These data strongly suggests the in vivo administration of chitosan/alginate nanoparticles containing pEGFP-ZFpn suppress Th2 response and may be used to control the leishmaniasis .
Resumo:
Excessive iron absorption is one of the main features of β-thalassemia and can lead to severe morbidity and mortality. Serial analyses of β-thalassemic mice indicate that while hemoglobin levels decrease over time, the concentration of iron in the liver, spleen, and kidneys markedly increases. Iron overload is associated with low levels of hepcidin, a peptide that regulates iron metabolism by triggering degradation of ferroportin, an iron-transport protein localized on absorptive enterocytes as well as hepatocytes and macrophages. Patients with β-thalassemia also have low hepcidin levels. These observations led us to hypothesize that more iron is absorbed in β-thalassemia than is required for erythropoiesis and that increasing the concentration of hepcidin in the body of such patients might be therapeutic, limiting iron overload. Here we demonstrate that a moderate increase in expression of hepcidin in β-thalassemic mice limits iron overload, decreases formation of insoluble membrane-bound globins and reactive oxygen species, and improves anemia. Mice with increased hepcidin expression also demonstrated an increase in the lifespan of their red cells, reversal of ineffective erythropoiesis and splenomegaly, and an increase in total hemoglobin levels. These data led us to suggest that therapeutics that could increase hepcidin levels or act as hepcidin agonists might help treat the abnormal iron absorption in individuals with β-thalassemia and related disorders.
Resumo:
Coeliac disease is an enteropathy associated with dietary gluten which occurs in individuals with a genetic predisposition. The pathogenesis remains obscure although it is clear that only certain parts of the gliadin molecule are toxic and there is considerable evidence of immunological activity, including antibody production. In this issue of European Journal of Gastroenterology and Hepatology Carton et al. present evidence in favour of an inherent depletion of CD4CD8 T cells, which could result in a loss of oral tolerance to ingested gliadin. Using flow cytometry they also demonstrated that the classic T-cell infiltration of coeliac disease is not due to an increase in T cells but is an apparent increase associated with a relative decrease in enterocytes as a result of the change in architecture of the mucosa. These could be important fundamental observations in helping to unravel the pathogenesis of coeliac disease.