971 resultados para ENTEROCOCCUS-FAECALIS BIOFILMS
Resumo:
Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment.
Resumo:
Introduction: Antibiotic-containing polymer-based nanofibers (hereafter referred to as scaffolds) have demonstrated great potential for their use in regenerative endodontics from both an antimicrobial and cytocompatibility perspective. This study sought to evaluate in vitro the effects of ciprofloxacin (CIP)-containing polymer scaffolds against Enterococcus faecalis biofilms. Methods: Human mandibular incisors were longitudinally sectioned to prepare radicular dentin specimens. Sterile dentin specimens were distributed in 24-well plates and inoculated with E. faecalisfor biofilm formation. Infected dentin specimens were exposed to 3 groups of scaffolds, namely polydioxanone (PDS) (control), PDS + 5 wt% CIP, and PDS + 25 wt% CIP for 2 days. Colony-forming units (CFU/mL) (n = 10) and scanning electron microscopy (SEM) (n -= 2) were performed to quantitatively and qualitatively assess the antimicrobial effectiveness, respectively. Results: PDS scaffold containing CIP at 25 wt% showed maximum bacteria elimination with no microbial growth, differing statistically (P < .05) from the control (PDS) and from PDS scaffold containing CIP at 5 wt%. Statistical differences (P < .05) were also seen for the CFU/mL data between pure PDS (5.92-6.02 log CFU/mL) and the PDS scaffold containing CIP at 5 wt% (5.39 5.87 log CFU/mL). SEM images revealed a greater concentration of bacteria on the middle third of the dentin specimen. after 5 days of biofilm formation. On scaffold exposures, SEM images showed similar results when compared with the CFU/mL data. Dentin specimens exposed to PDS + 25 wt% CIP scaffolds displayed a practically bacteria-free surface. Conclusions: On the basis of the data presented, newly developed antibiotic-containing electrospun scaffolds hold promise as an intracanal medicament to eliminate biofilm/infection before regenerative procedures.
Resumo:
The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8days). At 7°C, the counts of E. faecalis and E. faecium were below 2log10CFU/cm(2). For the temperatures of 25 and 39°C, after 1day, the counts of E. faecalis and E. faecium were 5.75 and 6.07log10CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4log10CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms.
Resumo:
The formation of mono-species biofilm (Listeria monocytogenes) and multi-species biofilms (Enterococcus faecium, Enterococcus faecalis, and L. monocytogenes) was evaluated. In addition, the effectiveness of sanitation procedures for the control of the multi-species biofilm also was evaluated. The biofilms were grown on stainless steel coupons at various incubation temperatures (7, 25 and 39°C) and contact times (0, 1, 2, 4, 6 and 8days). In all tests, at 7°C, the microbial counts were below 0.4 log CFU/cm(2) and not characteristic of biofilms. In mono-species biofilm, the counts of L. monocytogenes after 8days of contact were 4.1 and 2.8 log CFU/cm(2) at 25 and 39°C, respectively. In the multi-species biofilms, Enterococcus spp. were present at counts of 8 log CFU/cm(2) at 25 and 39°C after 8days of contact. However, the L. monocytogenes in multi-species biofilms was significantly affected by the presence of Enterococcus spp. and by temperature. At 25°C, the growth of L. monocytogenes biofilms was favored in multi-species cultures, with counts above 6 log CFU/cm(2) after 8days of contact. In contrast, at 39°C, a negative effect was observed for L. monocytogenes biofilm growth in mixed cultures, with a significant reduction in counts over time and values below 0.4 log CFU/cm(2) starting at day 4. Anionic tensioactive cleaning complemented with another procedure (acid cleaning, disinfection or acid cleaning+disinfection) eliminated the multi-species biofilms under all conditions tested (counts of all micro-organisms<0.4 log CFU/cm(2)). Peracetic acid was the most effective disinfectant, eliminating the multi-species biofilms under all tested conditions (counts of the all microorganisms <0.4 log CFU/cm(2)). In contrast, biguanide was the least effective disinfectant, failing to eliminate biofilms under all the test conditions.
Resumo:
Gardnerella vaginalis is the most frequent microorganism found in bacterial vaginosis (BV), while Escherichia coli and Enterococcus faecalis are amongst the most frequent pathogens found in urinary tract infections (UTIs). This study aimed to evaluate possible interactions between UTIs pathogens and G. vaginalis using an in vitro dual-species biofilm model. Our results showed that dual-species biofilms reached significantly higher bacterial concentration than mono-species biofilms. Moreover, visualization of dual-populations species in the biofilms, using the epifluorescence microscopy, revealed that all of the urogenital pathogens co-existed with G. vaginalis. In conclusion, our work demonstrates that uropathogens can incorporate into mature BV biofilms.
Resumo:
Enterococcal implant-associated infections are difficult to treat because antibiotics generally lack activity against enterococcal biofilms. We investigated fosfomycin, rifampin, and their combinations against planktonic and adherent Enterococcus faecalis (ATCC 19433) in vitro and in a foreign-body infection model. The MIC/MBClog values were 32/>512 μg/ml for fosfomycin, 4/>64 μg/ml for rifampin, 1/2 μg/ml for ampicillin, 2/>256 μg/ml for linezolid, 16/32 μg/ml for gentamicin, 1/>64 μg/ml for vancomycin, and 1/5 μg/ml for daptomycin. In time-kill studies, fosfomycin was bactericidal at 8× and 16× MIC, but regrowth of resistant strains occurred after 24 h. With the exception of gentamicin, no complete inhibition of growth-related heat production was observed with other antimicrobials on early (3 h) or mature (24 h) biofilms. In the animal model, fosfomycin alone or in combination with daptomycin reduced planktonic counts by ≈4 log10 CFU/ml below the levels before treatment. Fosfomycin cleared planktonic bacteria from 74% of cage fluids (i.e., no growth in aspirated fluid) and eradicated biofilm bacteria from 43% of cages (i.e., no growth from removed cages). In combination with gentamicin, fosfomycin cleared 77% and cured 58% of cages; in combination with vancomycin, fosfomycin cleared 33% and cured 18% of cages; in combination with daptomycin, fosfomycin cleared 75% and cured 17% of cages. Rifampin showed no activity on planktonic or adherent E. faecalis, whereas in combination with daptomycin it cured 17% and with fosfomycin it cured 25% of cages. Emergence of fosfomycin resistance was not observed in vivo. In conclusion, fosfomycin showed activity against planktonic and adherent E. faecalis. Its role against enterococcal biofilms should be further investigated, especially in combination with rifampin and/or daptomycin treatment.
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: To evaluate, in vitro, the antimicrobial activity and biofilm formation of three chlorhexidine varnishes in four Enterococcus faecalis strains: E. faecalis ATCC 29212, E. faecalis EF-D1 (from failed endodontic treatment), E. faecalis 072 (cheese) and E. faecalis U-1765 (nosocomial infection), and one Enterococcus durans strain (failed endodontic treatment). Study Design: The direct contact test was used to study the antimicrobial activity. Bacterial suspensions were exposed for one hour to EC40, Cervitec (CE) and Cervitec Plus (CEP) varnishes. "Eradication" was defined as 100% bacterial kill. The formation of enterococci biofilms was tested on the surface of the varnishes after 24 hours of incubation and expressed as percentage of biofilm reduction. Results: EC40 eradicated all strains except E. faecalis ATCC 29212, where 98.78% kill was achieved. CE and CEP showed antimicrobial activity against all the strains, but most clearly against E. durans and E. faecalis 072. EC40 completely inhibited the formation of biofilm of E. faecalis ATCC 29212, E. faecalis 072 and E. durans. CE and CEP led to over 92% of biofilm reduction, except in the case of E. faecalis U-1765 on CEP (76.42%). Conclusion: The three varnishes studied were seen to be effective in killing the tested strains of enterococci and in inhibiting the formation of biofilm, the best results being observed with EC40.
Resumo:
Objective: To determine the E. faecalis biofilm formation on the surface of five adhesive systems (AS) and its relationship with roughness. Study Design: The formation of E. faecalis biofilms was tested on the surface of four dual-cure AS: AdheSE DC, Clearfil DC Bond, Futurabond DC and Excite DSC and one light-cure antimicrobial AS, Clearfil Protect Bond, after 24 hours of incubation, using the MBEC high-throughput device. Results: E. faecalis biofilms grew on all the adhesives. The least growth of biofilm was on Excite DSC, Clearfil Protect Bond, and the control. Futurabond DC resulted in the greatest roughness and biofilm amount. There was a close relationship between the quantity of biofilm and roughness, except for Clearfil Protect Bond, which showed little biofilm but high roughness. Conclusion: None of the tested AS prevented E. faecalis biofilm formation, although the least quantity was found on the surface of Clearfil Protect Bond.
Resumo:
BACKGROUND: Enterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies. RESULTS: The 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections. CONCLUSION: E. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RF's effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.
Resumo:
BACKGROUND: We previously identified ebpR, encoding a potential member of the AtxA/Mga transcriptional regulator family, and showed that it is important for transcriptional activation of the Enterococcus faecalis endocarditis and biofilm associated pilus operon, ebpABC. Although ebpR is not absolutely essential for ebpABC expression (100-fold reduction), its deletion led to phenotypes similar to those of an ebpABC mutant such as absence of pili at the cell surface and, consequently, reduced biofilm formation. A non-piliated ebpABC mutant has been shown to be attenuated in a rat model of endocarditis and in a murine urinary tract infection model, indicating an important participation of the ebpR-ebpABC locus in virulence. However, there is no report relating to the environmental conditions that affect expression of the ebpR-ebpABC locus. RESULTS: In this study, we examined the effect of CO2/HCO3(-), pH, and the Fsr system on the ebpR-ebpABC locus expression. The presence of 5% CO2/0.1 M HCO3(-) increased ebpR-ebpABC expression, while the Fsr system was confirmed to be a weak repressor of this locus. The mechanism by which the Fsr system repressed the ebpR-ebpABC locus expression appears independent of the effects of CO2(-) bicarbonate. Furthermore, by using an ebpA::lacZ fusion as a reporter, we showed that addition of 0.1 M sodium bicarbonate to TSBG (buffered at pH 7.5), but not the presence of 5% CO2, induced ebpA expression in TSBG broth. In addition, using microarray analysis, we found 73 genes affected by the presence of sodium bicarbonate (abs(fold) > 2, P < 0.05), the majority of which belong to the PTS system and ABC transporter families. Finally, pilus production correlated with ebpA mRNA levels under the conditions tested. CONCLUSIONS: This study reports that the ebp locus expression is enhanced by the presence of bicarbonate with a consequential increase in the number of cells producing pili. Although the molecular basis of the bicarbonate effect remains unclear, the pathway is independent of the Fsr system. In conclusion, E. faecalis joins the growing family of pathogens that regulates virulence gene expression in response to bicarbonate and/or CO2.
Resumo:
BACKGROUND: We recently demonstrated that the ubiquitous Enterococcus faecalis ebp (endocarditis- and biofilm-associated pilus) operon is important for biofilm formation and experimental endocarditis. Here, we assess its role in murine urinary tract infection (UTI) by use of wild-type E. faecalis OG1RF and its nonpiliated, ebpA allelic replacement mutant (TX5475). METHODS: OG1RF and TX5475 were administered transurethrally either at an ~1 : 1 ratio (competition assay) or individually (monoinfection). Kidney pairs and urinary bladders were cultured 48 h after infection. These strains were also tested in a peritonitis model. RESULTS: No differences were observed in the peritonitis model. In mixed UTIs, OG1RF significantly outnumbered TX5475 in kidneys (P=.0033) and bladders (P< or =.0001). More OG1RF colony-forming units were also recovered from the kidneys of monoinfected mice at the 4 inocula tested (P=.015 to P=.049), and 50% infective doses of OG1RF for kidneys and bladder (9.1x10(1) and 3.5x10(3) cfu, respectively) were 2-3 log(10) lower than those of TX5475. Increased tropism for the kidney relative to the bladder was observed for both OG1RF and TX5475. CONCLUSION: The ebp locus, part of the core genome of E. faecalis, contributes to infection in an ascending UTI model and is the first such enterococcal locus shown to be important in this site.