564 resultados para ENDO-INULINASE
Resumo:
Detailed catalytic roles of the conserved Glu323, Asp460, and Glu519 of Arthrobacter sp. S37 inulinase (EnIA), a member of the glycoside hydrolase family 32, were investigated by site-directed mutagenesis and pH-dependence studies of the enzyme efficiency and homology modeling were carried out for EnIA and for D460E mutant. The enzyme efficiency (k(cat)/K-m) of the E323A and E519A mutants was significantly lower than that of the wild-type due to a substantial decrease in k(cat), but not due to variations in K-m, consistent with their putative roles as nucleophile and acid/base catalyst, respectively. The D460A mutant was totally inactive, whereas the D460E and D460N mutants were active to some extent, revealing Asp460 as a catalytic residue and demonstrating that the presence of a carboxylate group in this position is a prerequisite for catalysis. The pH-dependence studies indicated that the pK(a) of the acid/base catalyst decreased from 9.2 for the wild-type enzyme to 7.0 for the D460E mutant, implicating Asp460 as the residue that interacts with the acid/base catalyst Glu519 and elevates its pK(a). Homology modeling and molecular dynamics simulation of the wild-type enzyme and the D460E mutant shed light on the structural roles of Glu323, Asp460, and Glu519 in the catalytic activity of the enzyme. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.
Resumo:
The racemic title compound, C9H11NO4 . H2O, a tricyclic rearranged aminonorbornane dicarboxylic acid is a conformationally rigid analogue of glutamic acid and exists as an ammonium-carboxylate zwitterion, with the bridghead carboxylic acid group anti-related. In the crystal, intermolecular N-H...O and O-H...O hydrogen-bonding interactions involving the ammonium, carboxylic acid and water donor groups with both water and carboxyl O-atom acceptors give a three-dimensional framework structure.
Resumo:
A detailed analysis of the 1H and 13C NMR spectra of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones is presented. The chemical shift of the C-5 angular methyl, the C-2 alkyl/olefinic (C-10)/C-2 methine protons, the aromatic proton shieldings and the characteristic AMX and ABX spectral pattern of the ketomethylene and bridgehead protons were found to be sensitive to the phenyl ring orientation (anisotropy). These distinctive features could be used for configurational distinction for this class of compounds. With increasing ortho-methoxy substitution on the phenyl ring, considerable deshilelding of the bridgehead proton was observed (ca. 0.6 ppm). Absence of the C-2 alkyl group in the desalkyl isomers resulted in substantial changes in the chemical shifts of different protons. A study of the NMR spectra of the corresponding bicyclic compounds with C-2 methoxy/hydroxy substitution instead of the aryl group revealed that the anisotropy of the phenyl ring and the electronegative oxygen substituents have opposite effects. The 13C NMR spectral assignment of each carbon resonance of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones and the corresponding C-2 methoxy/hydroxy/chloro and methyl bicyclic compounds are reported. Additional ortho-methoxy substitution on the phenyl ring was found to produce considerable high field shifts of the C-10 and C-1 carbon resonances. A high-field shift was observed for the C-6 and C-8 carbonyl carbons, presumably due to 1,3-dicarbonyl interactions. The chemical shifts of C-1 aromatic, C-10 alkyl and C-2 carbons, which are sensitive to exo/endo isomerism, could be utilized in differentiating a pair of isomers.
Resumo:
Mammalian heparanase is an endo-β-glucuronidase associated with cell invasion in cancer metastasis, angiogenesis and inflammation. Heparanase cleaves heparan sulfate proteoglycans in the extracellular matrix and basement membrane, releasing heparin/heparan sulfate oligosaccharides of appreciable size. This in turn causes the release of growth factors, which accelerate tumor growth and metastasis. Heparanase has two glycosaminoglycan-binding domains; however, no three-dimensional structure information is available for human heparanase that can provide insights into how the two domains interact to degrade heparin fragments. We have constructed a new homology model of heparanase that takes into account the most recent structural and bioinformatics data available. Heparin analogs and glycosaminoglycan mimetics were computationally docked into the active site with energetically stable ring conformations and their interaction energies were compared. The resulting docked structures were used to propose a model for substrates and conformer selectivity based on the dimensions of the active site. The docking of substrates and inhibitors indicates the existence of a large binding site extending at least two saccharide units beyond the cleavage site (toward the nonreducing end) and at least three saccharides toward the reducing end (toward heparin-binding site 2). The docking of substrates suggests that heparanase recognizes the N-sulfated and O-sulfated glucosamines at subsite +1 and glucuronic acid at the cleavage site, whereas in the absence of 6-O-sulfation in glucosamine, glucuronic acid is docked at subsite +2. These findings will help us to focus on the rational design of heparanase-inhibiting molecules for anticancer drug development by targeting the two heparin/heparan sulfate recognition domains.
Resumo:
An extracellular endopolygalacturonate lyase of Cytophaga johnsonii was purified from the culture filtrate. It appeared to be homogeneous as judged by polyacrylamide gel electrophoresis at pH 8.6 as well as pH 4.3. The purified enzyme had a pH optimum around 9.0 and required Ca++ ions for its maximum activity. The apparent Kmfor polygalacturonic acid was found to be 0.22%. Both paper and column chromatography indicated formation and accumulation of an unsaturated monomer along with unsaturated di-, tri-, tetra- and pentamers from polygalacturonic acid by the enzyme action, indicating that the enzyme cleaved the substrate randomly in a non-hydrolytic manner. The glycosidic linkage next to the non-reducing end of polygalacturonic acid was not resistant to attack by this enzyme unlike in other known polygalacturonate lyases.
Resumo:
An endo-xylanase (1,4-β-d-xylanxylanohydrolase EC 3.2.1.8) was isolated from the culture filtrate of Paecilomyces varioti Bainier. The enzyme was purified 3.2 fold with a 60% yield by gel filtration and ion exchange chromatography. The purified enzyme had a molecular weight of 25,000 with a sedimentation coefficient of 2.2 S. The isoelectric point of the enzyme was 3.9. The enzyme was obtained in crystalline form. The optimum pH range was 5.5–7.0 and the temperature, 65°C. The Michaelis constant was 2.5 mg larchwood xylan/ml. The enzyme was found to degrade xylan by an endo mechanism producing arabinose, xylobiose, xylo- and arabinosylxylo-oligosaccharides, during the initial stages of hydrolysis. On prolonged incubation, xylotriose, arabinosylxylotriose and xylobiose were the major products with traces of xylotetraose, xylose and arabinose.
Resumo:
Methyl 5,6-Bis(2-methoxyphenyt)-1,4-dimethyl-7-oxobicyclo[2.2.1]hept-5-en-2-endo-carboxylate, a moderately crowded norbornenone ester, exhibits complex VT-DNMR behaviour. A similar behaviour is not seen in its 7-oxa analogue, showing that conformational transmission from position 7 has a crucial influence on the distance parameters that govern the dynamic processes involving the substituents on the bicycloheptene framework.
Resumo:
O objetivo deste trabalho consistiu na análise da infiltração apical em dentes retrobturados por três materiais: MTA, iROOT SP e Endo CPM Sealer. Para tal, foram utilizados 51 dentes humanos extraídos, incisivos centrais superiores, que foram instrumentados manualmente com limas tipo K, pela técnica Crown-down, obturados com compactação lateral e, após serem apicectomizados a 3mm aquém do ápice foram submetidos à retrobturação, com os três materiais propostos. As amostras foram divididas, randomicamente, em três grupos: GI MTA, GII iROOT SP e GIII Endo CPM Sealer, cada grupo com 15 amostras. Os dentes foram inseridos em tubos de eppendorfs, e feitos a impermeabilização do remanescente radicular utilizando duas camadas de cianocrilato, epóxi, e outra camada de esmalte. Em cada eppendorf foi adicionado caldo TSB estéril e uma suspensão de Enterococcos faecalis e adaptado ao frasco de vidro com meio de cultura enterococcosel. A infiltração bacteriana foi verificada pela turvação do meio de cultura. Após a análise no período de 60 dias, podemos concluir que durante esse tempo ocorreram infiltrações no Grupo I, 43,75 % das amostras apresentaram turvamento do meio de cultura demonstrando persistência da infecção. Já no Grupo II, 31,25 % das amostras tiveram crescimento bacteriano. Por fim no Grupo III, 25,00 % houve a infiltração. Grupos controle positivo e negativo para crescimento bacteriano foram realizados (n=3, cada). Os cimentos testados comportaram-se de maneira semelhante frente à infiltração bacteriana durante o período testado.